4751 (C1) Introduction to Advanced Mathematics

Section A

1	$[v=][\pm] \sqrt{\frac{2 E}{m}} \mathrm{www}$	3	M2 for $v^{2}=\frac{2 E}{m}$ or for $[v=][\pm] \sqrt{\frac{E}{\frac{1}{2} m}}$ or M1 for a correct constructive first step and M 1 for $v=[\pm] \sqrt{k}$ ft their $v^{2}=k$; if M0 then SC1 for $\sqrt{ } E / 1 / 2 m$ or $\sqrt{2 E} / m$ etc	3
2	$\frac{3 x-4}{x+1}$ or $3-\frac{7}{x+1}$ www as final answer	3	$\begin{aligned} & \text { M1 for }(3 x-4)(x-1) \\ & \text { and M1 for }(x+1)(x-1) \end{aligned}$	3
3	(i) 1 (ii) $1 / 64 \mathrm{www}$	$\begin{array}{\|l} 1 \\ 3 \end{array}$	M1 for dealing correctly with each of reciprocal, square root and cubing (allow 3 only for $1 / 64$) eg M2 for 64 or -64 or $1 / \sqrt{ } 4096$ or $1 / 4^{3}$ or M1 for $1 / 16^{3 / 2}$ or 4^{3} or -4^{3} or 4^{-3} etc	4
4	$\begin{aligned} & 6 x+2(2 x-5)=7 \\ & 10 x=17 \\ & \\ & x=1.7 \text { o.e. isw } \\ & y=-1.6 \text { o.e } . \text { isw } \end{aligned}$	M1 M1 A1 A1	for subst or multn of eqns so one pair of coeffts equal (condone one error) simplification (condone one error) or appropriate addn/subtn to eliminate variable allow as separate or coordinates as requested graphical soln: M0	4
5	(i) $-4 / 5$ or -0.8 o.e. (ii) $(15,0)$ or 15 found www	2 3	M1 for $4 / 5$ or 4/-5 or 0.8 or $-4.8 / 6$ or correct method using two points on the line (at least one correct) (may be graphical) or for $-0.8 x$ o.e. M1 for $y=$ their (i) $x+12$ o.e. or $4 x+5 y$ $=k$ and $(0,12)$ subst and M1 for using y $=0$ eg $-12=-0.8 x$ or $f t$ their eqn or M1 for given line goes through (0 , 4.8) and (6,0) and M1 for $6 \times 12 / 4.8$ graphical soln: allow M1 for correct required line drawn and M1 for answer within 2 mm of $(15,0)$	5

6	$\begin{aligned} & \mathrm{f}(2) \text { used } \\ & 2^{3}+2 k+7=3 \\ & k=-6 \end{aligned}$	M1 M1 A1	or division by $x-2$ as far as $x^{2}+2 x$ obtained correctly or remainder $3=2(4+k)+7$ o.e. 2 nd M1 dep on first	3
7	(i) 56 (ii) -7 or ft from -their (i)/8	2 2	M1 for $\frac{8 \times 7 \times 6}{3 \times 2 \times 1}$ or more simplified M1 for 7 or ft their (i)/8 or for $56 \times(-1 / 2)^{3}$ o.e. or ft ; condone x^{3} in answer or in M1 expression; 0 in qn for just Pascal's triangle seen	4
8	(i) $5 \sqrt{3}$ (ii) common denominator $=$ $\begin{aligned} & (5-\sqrt{ } 2)(5+\sqrt{ } 2) \\ & =23 \\ & \text { numerator }=10 \end{aligned}$	2 M1 A1 B1	M1 for $\sqrt{48}=4 \sqrt{ } 3$ allow M1A1 for $\frac{5-\sqrt{2}}{23}+\frac{5+\sqrt{2}}{23}$ allow 3 only for 10/23	5
9	$\begin{aligned} & \text { (i) } n=2 m \\ & 3 n^{2}+6 n=12 m^{2}+12 m \text { or } \\ & =12 m(m+1) \end{aligned}$ (ii) showing false when n is odd e.g. $3 n^{2}+6 n=\text { odd }+ \text { even }=\text { odd }$	M1 M2 B2	or any attempt at generalising; M0 for just trying numbers or M1 for $3 n^{2}+6 n=3 n(n+2)=3 \times$ even \times even and M1 for explaining that 4 is a factor of even \times even or M1 for 12 is a factor of $6 n$ when n is even and M1 for 4 is a factor of n^{2} so 12 is a factor of $3 n^{2}$ or $3 n(n+2)=3 \times$ odd \times odd $=$ odd or counterexample showing not always true; M1 for false with partial explanation or incorrect calculation	5

Section B

