4751 (C1) Introduction to Advanced Mathematics

Section A

1	(i) 0.125 or $1 / 8$ (ii) 1	1	as final answer	2
2	$y=5 x-4 \mathrm{www}$	3	M2 for $\frac{y-11}{-9-11}=\frac{x-3}{-1-3}$ o.e. or M1 for grad $=\frac{11-(-9)}{3-(-1)}$ or 5 eg in y $=5 x+k$ and M 1 for $y-11=$ their $m(x-$ $3)$ o.e. or subst $(3,11)$ or $(-1,-9)$ in $y=$ their $m x+c$ or M1 for $y=k x-4$ (eg may be found by drawing)	3
3	$x>9 / 6$ o.e. or 9/6 < x o.e. WWW isw	3	M2 for $9<6 x$ or M1 for $-6 x<-9$ or $k<$ $6 x$ or $9<k x$ or $7+2<5 x+x$ [condone \leq for Ms]; if 0, allow SC1 for 9/6 o.e found	3
4	$a=-5 \mathrm{www}$	3	M1 for $\mathrm{f}(2)=0$ used and M1 for $10+$ $2 a=0$ or better long division used: M1 for reaching $(8+a) x-6$ in working and M1 for $8+a=3$ equating coeffts method: M2 for obtaining $x^{3}+2 x^{2}+4 x+3$ as other factor	3
5	(i) $4\left[x^{3}\right]$ (ii) $84\left[x^{2}\right] \mathrm{Www}$	2	ignore any other terms in expansion M1 for $-3\left[x^{3}\right]$ and $7\left[x^{3}\right]$ soi; M1 for $\frac{7 \times 6}{2}$ or 21 or for Pascal's triangle seen with 1721 ... row and M1 for 2^{2} or 4 or $\{2 x\}^{2}$	5

6	1/5 or 0.2 o.e. Www	3	M1 for $3 x+1=2 x \times 4$ and M1 for $5 x=1$ o.e. or M1 for $1.5+\frac{1}{2 x}=4$ and M1 for $\frac{1}{2 x}=2.5$ o.e.	3
7	(i) $5^{3.5}$ or $k=3.5$ or $7 / 2$ o.e. (ii) $16 a^{6} b^{10}$	2 2	M1 for $125=5^{3}$ or $\sqrt{5}=5^{\frac{1}{2}}$ SC1 for $5^{\frac{3}{2}}$ o.e. as answer without working M1 for two 'terms' correct and multiplied; mark final answer only	4
8	$\begin{aligned} & b^{2}-4 a c \text { soi } \\ & k^{2}-4 \times 2 \times 18<0 \text { o.e. } \\ & -12<k<12 \end{aligned}$	$\begin{array}{\|l} \hline \text { M1 } \\ \text { M1 } \\ \text { A2 } \end{array}$	allow in quadratic formula or clearly looking for perfect square condone \leq; or M1 for 12 identified as boundary may be two separate inequalities; A1 for \leq used or for one 'end' correct if two separate correct inequalities seen, isw for then wrongly combining them into one statement; condone b instead of k; if no working, SC2 for $k<12$ and SC2 for $k>-12$ (ie SC2 for each 'end' correct)	4
9	$\begin{aligned} & y+5=x y+2 x \\ & y-x y=2 x-5 \text { oe or } \mathrm{ft} \\ & y(1-x)=2 x-5 \text { oe or } \mathrm{ft} \\ & {[y=] \frac{2 x-5}{1-x} \text { oe or } \mathrm{ft} \text { as final answer }} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { M1 } \end{aligned}$	for expansion for collecting terms for taking out y factor; dep on $x y$ term for division and no wrong work after ft earlier errors for equivalent steps if error does not simplify problem	4
10	(i) $9 \sqrt{3}$ (ii) $6+2 \sqrt{ } 2 \mathrm{www}$	2 3	M1 for $5 \sqrt{3}$ or $4 \sqrt{3}$ seen M1 for attempt to multiply num. and denom. by $3+\sqrt{ } 2$ and M 1 for denom. 7 or $9-2$ soi from denom. mult by $3+\sqrt{ } 2$	5

Section B

11	i	C, mid pt of $\mathrm{AB}=\left(\frac{11+(-1)}{2}, \frac{4}{2}\right)$ $=(5,2)$ $\left[\mathrm{AB}^{2}=\right] 12^{2}+4^{2}[=160]$ oe or $\left[\mathrm{CB}^{2}=\right] 6^{2}+2^{2}[=40]$ oe with AC quote of $(x-a)^{2}+(y-b)^{2}=r^{2}$ o.e with different letters completion (ans given)	B1 B1 B1 B1	evidence of method required - may be on diagram, showing equal steps, or start at A or B and go half the difference towards the other or square root of these; accept unsimplified or $(5,2)$ clearly identified as centre and $\sqrt{40}$ as r (or 40 as r^{2}) www or quote of $g f c$ formula and finding c $=-11$ dependent on centre (or midpt) and radius (or radius ${ }^{2}$) found independently and correctly	4
	ii	correct subst of $x=0$ in circle eqn soi $(y-2)^{2}=15$ or $y^{2}-4 y-11[=0]$ $y-2= \pm \sqrt{15}$ or ft $[y=] 2 \pm \sqrt{15} \text { cao }$	M1 M1 M1 A1	condone one error or use of quad formula (condone one error in formula); ft only for 3 term quadratic in y if $y=0$ subst, allow SC1 for $(11,0)$ found alt method: M1 for y values are $2 \pm a$ M1 for $a^{2}+5^{2}=40$ soi M1 for $a^{2}=40-5^{2}$ soi A1 for $[y=] 2 \pm \sqrt{15}$ cao	4
	iii	$\operatorname{grad} \mathrm{AB}=\frac{4}{11-(-1)}$ or $1 / 3$ o.e. so grad $\operatorname{tgt}=-3$ eqn of tgt is $y-4=-3(x-11)$ $y=-3 x+37 \text { or } 3 x+y=37$ $(0,37)$ and $(37 / 3,0)$ o.e. ft isw	M1 M1 M1 A1 B2	or grad AC (or BC) or $\mathrm{ft}-1$ /their gradient of AB or subst $(11,4)$ in $y=-3 x+c$ or ft (no ft for their grad AB used) accept other simplified versions B1 each, ft their tgt for $\operatorname{grad} \neq 1$ or $1 / 3$; accept $x=0, y=37$ etc NB alt method: intercepts may be found first by proportion then used to find eqn	6

12	ii iii	$\begin{aligned} & 3 x^{2}+6 x+10=2-4 x \\ & 3 x^{2}+10 x+8[=0] \\ & (3 x+4)(x+2)[=0] \\ & x=-2 \text { or }-4 / 3 \text { o.e. } \\ & y=10 \text { or } 22 / 3 \text { o.e. } \\ & 3(x+1)^{2}+7 \end{aligned}$ min at $y=7$ or ft from (ii) for positive c (ft for (ii) only if in correct form)	M1 M1 M1 A1 A1 4 B2	for subst for x or y or subtraction attempted or $3 y^{2}-52 y+220[=0]$; for rearranging to zero (condone one error) or $(3 y-22)(y-10)$; for sensible attempt at factorising or formula or completing square or A1 for each of $(-2,10)$ and (-4/3, 22/3) о.е. 1 for $a=3,1$ for $b=1,2$ for $c=7$ or M1 for $10-3 \times$ their b^{2} soi or for $7 / 3$ or for $10 / 3$ - their b^{2} soi may be obtained from (ii) or from good symmetrical graph or identified from table of values showing symmetry condone error in x value in stated min ft from (iii) [getting confused with 3 factor] B 1 if say turning pt at $y=7$ or ft without identifying min or M1 for min at $x=-1$ [e.g. may start again and use calculus to obtain $x=-1]$ or min when $(x+1)^{[2]}=0$; and A1 for showing y positive at min or M1 for showing discriminant neg. so no real roots and A1 for showing above axis not below eg positive x^{2} term or goes though $(0,10)$ or M1 for stating bracket squared must be positive [or zero] and A1 for saying other term is positive	5 4 4 2

