4751 Mark Scheme

4751 (C1) Introduction to Advanced Mathematics

1		$[a =]2c^2 - b$ www o.e.	3	M1 for each of 3 complete correct
				steps, ft from previous error if
				equivalent difficulty
2				condone '=' used for first two Ms
		5x-3 < 2x+10	M1	M0 for just $5x - 3 < 2(x + 5)$
		3x < 13	3.54	10 0 6
		12	M1	or $-13 < -3x$ or ft
		$x < \frac{13}{3}$ o.e.	N/1	on ft. javy funthan simulification of 12/2.
		3	M1	or ft; isw further simplification of 13/3; M0 for just $x < 4.3$
				Who for just $x < 4.5$
3	(i)	(4, 0)	1	allow $y = 0$, $x = 4$
	(-)	(., 0)	_	bod B1 for $x = 4$ but do not isw:
				0 for (0, 4) seen
				0 for (4, 0) and (0, 10) both given
				(choice) unless (4, 0) clearly identified
				as the x-axis intercept
3	(ii)	5x + 2(5 - x) = 20 o.e.	M1	for subst or for multn to make coeffts
				same and appropriate addn/subtn;
				condone one error
		(10/3, 5/3) www isw	A2	or A1 for $x = 10/3$ and A1 for $y = 5/3$
				o.e. isw; condone 3.33 or better and 1.67
				or better
				A1 for (3.3, 1.7)
				AT 101 (3.3, 1.7)
4	(i)	translation	B1	0 for shift/move
		$\begin{pmatrix} -4 \end{pmatrix}$		
		by $\begin{bmatrix} \cdot \\ 0 \end{bmatrix}$ or 4 [units] to left	B1	or 4 units in negative x direction o.e.
4	(ii)	sketch of parabola right way up and	B1	mark intent for both marks
1	(11)	with minimum on negative y-axis		mark ment for both marks
		William International Control of Control		
		min at $(0, -4)$ and graph through -2	B 1	must be labelled or shown nearby
		and 2 on x-axis		
5	(i)	1 1	2	M1 for 1
		$\frac{1}{12}$ or $\pm \frac{1}{12}$		M1 for $\frac{1}{144^{\frac{1}{2}}}$ o.e. or for $\sqrt{144} = 12$ soi
				177
5	(ii)	denominator = 18	B1	B0 if 36 after addition
	` /			
		numerator = $5 - \sqrt{7} + 4(5 + \sqrt{7})$	M1	for M1 , allow in separate fractions
				25 . 2 /5
		$=25+3\sqrt{7}$ as final answer	A1	allow B3 for $\frac{25+3\sqrt{7}}{18}$ as final answer
				18
				www

6 (i)	cubic correct way up and with two turning pts touching x -axis at -1 , and through it at 2.5 and no other intersections	B1 B1	intns must be shown labelled or worked out nearby
	y- axis intersection at −5	B 1	
6 (ii)	$2x^3 - x^2 - 8x - 5$	2	B1 for 3 terms correct or M1 for correct expansion of product of two of the given factors
7	attempt at $f(-3)$ -27 + 18 - 15 + k = 6 k = 30	M1 A1 A1	or M1 for long division by $(x + 3)$ as far as obtaining $x^2 - x$ and A1 for obtaining remainder as $k - 24$ (but see below) equating coefficients method: M2 for $(x + 3)(x^2 - x + 8)$ [+6] o.e. (from inspection or division) eg M2 for obtaining $x^2 - x + 8$ as quotient in division
8	$x^{3} + 15x + \frac{75}{x} + \frac{125}{x^{3}}$ www isw or $x^{3} + 15x + 75x^{-1} + 125x^{-3}$ www isw	4	B1 for both of x^3 and $\frac{125}{x^3}$ or $125x^{-3}$ isw and M1 for 1 3 3 1 soi; A1 for each of $15x$ and $\frac{75}{x}$ or $75x^{-1}$ isw or SC2 for completely correct unsimplified answer

		SCHEILIG	January 2010
9	$x^2 - 5x + 7 = 3x - 10$	M1	or attempt to subst $(y + 10)/3$ for x
	$x^2 - 8x + 17 = 0$ o.e or $y^2 - 4y + 13 = 0$ o.e	M1	condone one error; allow M1 for $x^2 - 8x = -17$ [oe for y] only if they go on to completing square method
	use of $b^2 - 4ac$ with numbers subst (condone one error in substitution) (may be in quadratic formula)	M1	or $(x-4)^2 = 16 - 17$ or $(x-4)^2 + 1 = 0$ (condone one error)
	$b^2 - 4ac = 64 - 68 \text{ or } -4 \text{ cao}$ [or $16 - 52 \text{ or } -36 \text{ if } y \text{ used}$]	A1	or $(x-4)^2 = -1$ or $x = 4 \pm \sqrt{-1}$ [or $(y-2)^2 = -9$ or $y = 2 \pm \sqrt{-9}$]
	[< 0] so no [real] roots [so line and curve do not intersect]	A1	or conclusion from comp. square; needs to be explicit correct conclusion and correct ft; allow '< 0 so no intersection' o.e.; allow '-4 so no roots' etc
			allow A2 for full argument from sum of two squares = 0; A1 for weaker correct conclusion
			some may use the condition $b^2 < 4ac$ for no real roots; allow equivalent marks, with first A1 for $64 < 68$ o.e.
10 (i)	grad CD = $\frac{5-3}{3-(-1)} \left[= \frac{2}{4} \text{ o.e.} \right]$ isw	M1	NB needs to be obtained independently of grad AB
	grad AB = $\frac{3-(-1)}{6-(-2)}$ or $\frac{4}{8}$ isw	M1	
	same gradient so parallel www	A1	must be explicit conclusion mentioning 'same gradient' or 'parallel'
			if M0, allow B1 for 'parallel lines have same gradient' o.e.
10 (ii)	$[BC^2=] 3^2 + 2^2$	M1	accept $(6-3)^2 + (3-5)^2$ o.e.
	$[BC^2 =] 13$	A1	or [BC =] $\sqrt{13}$
	showing $AD^2 = 1^2 + 4^2$ [=17] [$\neq BC^2$] isw	A1	or [AD =] $\sqrt{17}$
			or equivalent marks for finding AD or AD^2 first
			alt method: showing $AC \neq BD$ – mark equivalently

		1	,
10 (iii)	[BD eqn is] $y = 3$	M1	eg allow for 'at M, $y = 3$ ' or for 3 subst in eqn of AC
	eqn of AC is $y - 5 = 6/5 \times (x - 3)$ o.e [$y = 1.2x + 1.4$ o.e.]	M2	or M1 for grad AC = $6/5$ o.e. (accept unsimplified) and M1 for using their grad of AC with coords of A(-2 , -1) or C (3, 5) in eqn of line or M1 for 'stepping' method to reach M
	M is (4/3, 3) o.e. isw	A1	allow: at M, $x = 16/12$ o.e. [eg =4/3] isw A0 for 1.3 without a fraction answer seen
10 (iv)	midpt of BD = $(5/2, 3)$ or equivalent simplified form cao	M1	or showing BM \neq MD oe [BM = 14/3, MD = 7/3]
	midpt AC = (1/2, 2) or equivalent simplified form cao or 'M is 2/3 of way from A to C'	M1	or showing AM \neq MC or AM ² \neq MC ²
	conclusion 'neither diagonal bisects the other'	A1	in these methods A1 is dependent on coords of M having been obtained in part (iii) or in this part; the coordinates of M need not be correct; it is also dependent on midpts of both AC and BD attempted, at least one correct
			alt method: show that mid point of BD does not lie on AC (M1) and vice-versa (M1), A1 for both and conclusion

11 (i)	centre $C' = (3, -2)$	1	
	radius 5	1	0 for ±5 or −5
11 (ii)	showing $(6-3)^2 + (-6+2)^2 = 25$	B1	interim step needed
	showing that $\overrightarrow{AC'} = \overrightarrow{C'B} = \begin{pmatrix} -3 \\ 4 \end{pmatrix}$ o.e.	B2	or B1 each for two of: showing midpoint of AB = (3, -2); showing B (0, 2) is on circle; showing AB = 10
			or B2 for showing midpoint of AB = (3, -2) and saying this is centre of circle
			or B1 for finding eqn of AB as $y = -4/3 x + 2$ o.e. and B1 for finding one of its intersections with the circle is $(0, 2)$
			or B1 for showing C'B = 5 and B1 for showing AB = 10 or that AC' and BC' have the same gradient
			or B1 for showing that AC' and BC' have the same gradient and B1 for showing that B (0, 2) is on the circle
11 (iii)	grad AC' or $AB = -4/3$ o.e.	M1	or ft from their C', must be evaluated
	grad tgt = -1/their AC' grad	M1	may be seen in eqn for tgt; allow M2 for grad tgt = $\frac{3}{4}$ oe soi as first step
	y - (-6) = their m(x - 6) o.e.	M1	or M1 for $y = \text{their } m \times x + c \text{ then subst}$ (6, -6)
	y = 0.75x - 10.5 o.e. isw	A1	eg A1 for $4y = 3x - 42$
			allow B4 for correct equation www isw
11 (iv)	centre C is at (12, -14) cao	B2	B1 for each coord
	circle is $(x - 12)^2 + (y + 14)^2 = 100$	B1	ft their C if at least one coord correct

12 (i)	10	1	
12 (1)		•	
12 (ii)	$[x =] 5$ or ft their (i) $\div 2$	1	not necessarily ft from (i) eg they may start again with calculus to get $x = 5$
	ht = 5[m] cao	1	
12 (iii)	d = 7/2 o.e.	M1	or ft their (ii) -1.5 or their (i) $\div 2 - 1.5$ o.e.
	$[y =] 1/5 \times 3.5 \times (10 - 3.5)$ o.e. or ft	M1	or $7 - 1/5 \times 3.5^2$ or ft
	= 91/20 o.e. cao isw	A1	or showing $y - 4 = 11/20$ o.e. cao
12 (iv)	$4.5 = 1/5 \times x(10 - x)$ o.e.	M1	
	22.5 = x(10 - x) o.e.	M1	eg $4.5 = x(2 - 0.2x)$ etc
	$2x^2 - 20x + 45 = 0$ o.e. eg $x^2 - 10x + 22.5 = 0$ or $(x - 5)^2 = 2.5$	A1	cao; accept versions with fractional coefficients of x^2 , isw
	$[x=]$ $\frac{20 \pm \sqrt{40}}{4}$ or $5 \pm \frac{1}{2}\sqrt{10}$ o.e.	M1	or $x-5=[\pm]\sqrt{2.5}$ o.e.; ft their quadratic eqn provided at least M1 gained already; condone one error in formula or substitution; need not be simplified or be real
	width = $\sqrt{10}$ o.e. eg $2\sqrt{2.5}$ cao	A1	accept simple equivalents only