4751 (C1) Introduction to Advanced Mathematics

1	[$a=] 2 c^{2}-b$ www o.e.	3	M1 for each of 3 complete correct steps, ft from previous error if equivalent difficulty
2	$\begin{aligned} 5 x-3 & <2 x+10 \\ 3 x & <13 \\ x & <\frac{13}{3} \text { o.e. } \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { M1 } \end{aligned}$	```condone ' \(=\) ' used for first two Ms M0 for just \(5 x-3<2(x+5)\) or \(-13<-3 x\) or ft or ft; isw further simplification of 13/3; M0 for just \(x<4.3\)```
3 (i)	$(4,0)$	1	allow $y=0, x=4$ bod $\mathbf{B 1}$ for $x=4$ but do not isw: $\mathbf{0}$ for $(0,4)$ seen 0 for $(4,0)$ and $(0,10)$ both given (choice) unless $(4,0)$ clearly identified as the x-axis intercept
3 (ii)	$5 x+2(5-x)=20 \text { o.e. }$ (10/3, 5/3) www isw	M1 A2	for subst or for multn to make coeffts same and appropriate addn/subtn; condone one error or $\mathbf{A 1}$ for $x=10 / 3$ and $\mathbf{A 1}$ for $y=5 / 3$ o.e. isw; condone 3.33 or better and 1.67 or better A1 for (3.3, 1.7)
4 (i)	translation by $\binom{-4}{0}$ or 4 [units] to left	$\begin{gathered} \text { B1 } \\ \text { B1 } \end{gathered}$	0 for shift/move or 4 units in negative x direction o.e.
4 (ii)	sketch of parabola right way up and with minimum on negative y-axis min at $(0,-4)$ and graph through -2 and 2 on x-axis	B1 B1	mark intent for both marks must be labelled or shown nearby
5 (i)	$\frac{1}{12} \text { or } \pm \frac{1}{12}$	2	M1 for $\frac{1}{144^{\frac{1}{2}}}$ o.e. or for $\sqrt{144}=12$ soi
5 (ii)	denominator $=18$ $\text { numerator }=5-\sqrt{7}+4(5+\sqrt{7})$ $=25+3 \sqrt{7}$ as final answer	B1 M1 A1	B0 if 36 after addition for M1, allow in separate fractions allow $\mathbf{B 3}$ for $\frac{25+3 \sqrt{7}}{18}$ as final answer WWW

6 (i)	cubic correct way up and with two turning pts touching x-axis at -1 , and through it at 2.5 and no other intersections y - axis intersection at -5	B1 B1 B1	intns must be shown labelled or worked out nearby
6 (ii)	$2 x^{3}-x^{2}-8 x-5$	2	B1 for 3 terms correct or M1 for correct expansion of product of two of the given factors
7	$\begin{aligned} & \text { attempt at } \mathrm{f}(-3) \\ & -27+18-15+k=6 \\ & k=30 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { A1 } \end{gathered}$	or M1 for long division by $(x+3)$ as far as obtaining $x^{2}-x$ and A1 for obtaining remainder as $k-24$ (but see below) equating coefficients method: M2 for $(x+3)\left(x^{2}-x+8\right)[+6]$ o.e. (from inspection or division) eg M2 for obtaining $x^{2}-x+8$ as quotient in division
8	$x^{3}+15 x+\frac{75}{x}+\frac{125}{x^{3}}$ www isw or $x^{3}+15 x+75 x^{-1}+125 x^{-3}$ www isw	4	B1 for both of x^{3} and $\frac{125}{x^{3}}$ or $125 x^{-3}$ isw and M1 for 1331 soi; A1 for each of $15 x$ and $\frac{75}{x}$ or $75 x^{-1}$ isw or SC2 for completely correct unsimplified answer

9	$\begin{aligned} & x^{2}-5 x+7=3 x-10 \\ & x^{2}-8 x+17[=0] \text { o.e or } \\ & y^{2}-4 y+13[=0] \text { o.e } \end{aligned}$ use of $b^{2}-4 a c$ with numbers subst (condone one error in substitution) (may be in quadratic formula) $b^{2}-4 a c=64-68 \text { or }-4 \text { сао }$ [or $16-52$ or -36 if y used] [<0] so no [real] roots [so line and curve do not intersect]	M1 M1 M1 A1 A1	or attempt to subst $(y+10) / 3$ for x condone one error; allow M1 for $x^{2}-8 x=-17$ [oe for y] only if they go on to completing square method or $(x-4)^{2}=16-17$ or $(x-4)^{2}+1=0$ (condone one error) or $(x-4)^{2}=-1$ or $x=4 \pm \sqrt{-1}$ [or $(y-2)^{2}=-9$ or $y=2 \pm \sqrt{-9}$] or conclusion from comp. square; needs to be explicit correct conclusion and correct ft; allow '< 0 so no intersection' o.e.; allow ' -4 so no roots' etc allow A2 for full argument from sum of two squares $=0$; A1 for weaker correct conclusion some may use the condition $b^{2}<4 a c$ for no real roots; allow equivalent marks, with first A 1 for $64<68$ o.e.
10 (i)	$\operatorname{grad} \mathrm{CD}=\frac{5-3}{3-(-1)}\left[=\frac{2}{4}\right.$ o.e. $]$ isw $\operatorname{grad} \mathrm{AB}=\frac{3-(-1)}{6-(-2)}$ or $\frac{4}{8}$ isw same gradient so parallel www	M1 M1 A1	NB needs to be obtained independently of grad AB must be explicit conclusion mentioning 'same gradient' or 'parallel' if M0, allow B1 for 'parallel lines have same gradient' o.e.
10 (ii)	$\begin{aligned} & {\left[\mathrm{BC}^{2}=\right] 3^{2}+2^{2}} \\ & {\left[\mathrm{BC}^{2}=\right] 13} \\ & \text { showing } \mathrm{AD}^{2}=1^{2}+4^{2}[=17]\left[\neq \mathrm{BC}^{2}\right] \\ & \text { isw } \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	accept $(6-3)^{2}+(3-5)^{2}$ o.e. or $[\mathrm{BC}=] \sqrt{13}$ or $[\mathrm{AD}=] \sqrt{17}$ or equivalent marks for finding AD or AD^{2} first alt method: showing $\mathrm{AC} \neq \mathrm{BD}$ - mark equivalently

10 (iii)	$\text { [BD eqn is] } y=3$ eqn of AC is $y-5=6 / 5 \times(x-3)$ o.e $\text { [} y=1.2 x+1.4 \text { o.e.] }$ M is $(4 / 3,3)$ o.e. isw	M1 M2 A1	eg allow for 'at M, $y=3$ ' or for 3 subst in eqn of AC or M1 for grad AC $=6 / 5$ o.e. (accept unsimplified) and M1 for using their grad of AC with coords of A $(-2,-1)$ or C $(3,5)$ in eqn of line or $\mathbf{M 1}$ for 'stepping' method to reach M allow : at M, $x=16 / 12$ o.e. [eg =4/3] isw A0 for 1.3 without a fraction answer seen
10 (iv)	midpt of $\mathrm{BD}=(5 / 2,3)$ or equivalent simplified form cao midpt $\mathrm{AC}=(1 / 2,2)$ or equivalent simplified form cao or ' M is $2 / 3$ of way from A to C ' conclusion 'neither diagonal bisects the other'	M1 M1 A1	or showing $\mathrm{BM} \neq \mathrm{MD}$ oe $[B M=14 / 3, M D=7 / 3]$ or showing $\mathrm{AM} \neq \mathrm{MC}$ or $\mathrm{AM}^{2} \neq \mathrm{MC}^{2}$ in these methods A1 is dependent on coords of M having been obtained in part (iii) or in this part; the coordinates of M need not be correct; it is also dependent on midpts of both AC and BD attempted, at least one correct alt method: show that mid point of BD does not lie on AC (M1) and vice-versa (M1), A1 for both and conclusion

11 (i)	$\begin{aligned} & \text { centre } \mathrm{C}^{\prime}=(3,-2) \\ & \text { radius } 5 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \end{aligned}$	0 for ± 5 or -5
11 (ii)	showing $(6-3)^{2}+(-6+2)^{2}=25$ showing that $\overrightarrow{A C^{\prime}}=\overrightarrow{C^{\prime} B}=\binom{-3}{4}$ o.e.	B1 B2	interim step needed or B1 each for two of: showing midpoint of $\mathrm{AB}=(3,-2)$; showing $\mathrm{B}(0,2)$ is on circle; showing $\mathrm{AB}=10$ or B2 for showing midpoint of $\mathrm{AB}=(3,-2)$ and saying this is centre of circle or $\mathbf{B 1}$ for finding eqn of $A B$ as $y=-4 / 3 x+2$ o.e. and $\mathbf{B 1}$ for finding one of its intersections with the circle is $(0,2)$ or $\mathbf{B 1}$ for showing $\mathrm{C}^{\prime} \mathrm{B}=5$ and $\mathbf{B 1}$ for showing $\mathrm{AB}=10$ or that AC^{\prime} and BC^{\prime} have the same gradient or B1 for showing that AC^{\prime} and BC^{\prime} have the same gradient and B 1 for showing that $\mathrm{B}(0,2)$ is on the circle
11 (iii)	grad $A C^{\prime}$ or $A B=-4 / 3$ o.e. grad tgt $=-1 /$ their $A C^{\prime}$ grad $y-(-6)=\text { their } m(x-6) \text { o.e. }$ $y=0.75 x-10.5 \text { o.e. isw }$	M1 M1 M1 A1	or ft from their C^{\prime}, must be evaluated may be seen in eqn for tgt; allow M2 for $\operatorname{grad} \operatorname{tgt}=3 / 4$ oe soi as first step or M1 for $y=$ their $m \times x+c$ then subst (6, -6) eg A1 for $4 y=3 x-42$ allow B4 for correct equation www isw
11 (iv)	centre C is at $(12,-14)$ cao circle is $(x-12)^{2}+(y+14)^{2}=100$	$\begin{aligned} & \text { B2 } \\ & \text { B1 } \end{aligned}$	B1 for each coord ft their C if at least one coord correct

12 (i)	10	1	
12 (ii)	$[x=] 5 \text { or } \mathrm{ft} \text { their }(\mathrm{i}) \div 2$ $\mathrm{ht}=5[\mathrm{~m}] \text { cao }$		not necessarily ft from (i) eg they may start again with calculus to get $x=5$
12 (iii)	$\begin{aligned} & d=7 / 2 \text { o.e. } \\ & {[y=] 1 / 5 \times 3.5 \times(10-3.5) \text { o.e. or } \mathrm{ft}} \\ & =91 / 20 \text { o.e. cao isw } \end{aligned}$	M1 M1 A1	or ft their (ii) -1.5 or their (i) $\div 2-1.5$ o.e. or $7-1 / 5 \times 3.5^{2}$ or ft or showing $y-4=11 / 20$ o.e. cao
12 (iv)	$\begin{aligned} & 4.5=1 / 5 \times x(10-x) \text { o.e. } \\ & 22.5=x(10-x) \text { o.e. } \\ & 2 x^{2}-20 x+45[=0] \text { o.e. eg } \\ & x^{2}-10 x+22.5[=0] \text { or }(x-5)^{2}=2.5 \\ & {[x=] \frac{20 \pm \sqrt{40}}{4} \text { or } 5 \pm \frac{1}{2} \sqrt{10} \text { o.e. }} \\ & \text { width }=\sqrt{10} \text { o.e. eg } 2 \sqrt{2.5} \text { cao } \end{aligned}$	M1 M1 A1 M1 A1	eg $4.5=x(2-0.2 x)$ etc cao; accept versions with fractional coefficients of x^{2}, isw or $x-5=[\pm] \sqrt{2.5}$ o.e.; ft their quadratic eqn provided at least M1 gained already; condone one error in formula or substitution; need not be simplified or be real accept simple equivalents only

