Mark Scheme 4751 June 2006

Section A

1	$[r]=[\pm] \sqrt{\frac{3 V}{\pi h}}$ o.e. 'double-decker'	3	2 for $r^{2}=\frac{3 V}{\pi h}$ or $r=\sqrt{\frac{V}{\frac{1}{3} \pi h}}$ o.e. or M1 for correct constructive first step or for $r=\sqrt{\mathrm{k}} \mathrm{ft}$ their $r^{2}=k$	3
2	$a=1 / 4$	2	M1 for subst of -2 or for $-8+4 a+7=0$ o.e. obtained eg by division by $(x+2)$	2
3	$3 x+2 y=26$ or $y=-1.5 x+13$ isw	3	M1 for $3 x+2 y=c$ or $y=-1.5 x+c$ M1 for subst $(2,10)$ to find c or for or for $y-10=$ their gradient $\times(x-2)$	3
4	(i) $\mathrm{P} \Leftarrow \mathrm{Q}$ (ii) $\mathrm{P} \Leftrightarrow \mathrm{Q}$	$\begin{aligned} & \hline 1 \\ & 1 \\ & \hline \end{aligned}$	condone omission of P and Q	2
5	$x+3(3 x+1)=6 \text { o.e. }$ $10 x=3$ or $10 y=19$ o.e. $(0.3,1.9)$ or $x=0.3$ and $y=1.9$ o.e.	M1 A1 A1	for subst or for rearrangement and multn to make one pair of coefficients the same or for both eqns in form ' $y=$ ' (condone one error) graphical soln: (must be on graph paper) M1 for each line, A1 for $(0.3,1.9)$ o.e cao; allow B3 for (0.3, 1.9) o.e.	3
6	$\begin{array}{\|l\|} \hline-3<x<1 \\ \text { [condone } x<1, x>-3 \text {] } \end{array}$	4	B3 for -3 and 1 or M1 for $x^{2}+2 x-3[<0]$ or $(x+1)^{2}<1=4$ and M1 for $(x+3)(x-1)$ or $x=(-2 \pm 4) / 2$ or for $(x+1)$ and ± 2 on opp. sides of eqn or inequality; if 0 , then SC1 for one of $x<1, x\rangle-3$	4
7	(i) $28 \sqrt{ } 6$ (ii) $49-12 \sqrt{ } 5$ isw	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	1 for $30 \sqrt{6}$ or $2 \sqrt{6}$ or $2 \sqrt{ } 2 \sqrt{ } 3$ or $28 \sqrt{ } 2 \sqrt{ } 3$ 2 for 49 and 1 for $-12 \sqrt{5}$ or M1 for 3 correct terms from $4-6 \sqrt{5}-6 \sqrt{ } 5+45$	5
8	20 -160 or ft for $-8 \times$ their 20	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	0 for just 20 seen in second part; M1 for $6!/(3!3!)$ or better condone $-160 x^{3}$; M1 for $[-] 2^{3} \times$ [their] 20 seen or for [their] $20 \times(-2 x)^{3}$; allow B1 for 160	4
9	(i) $4 / 27$ (ii) $3 a^{10} b^{8} c^{-2}$ or $\frac{3 a^{10} b^{8}}{c^{2}}$	2 3	1 for 4 or 27 2 for 3 'elements' correct, 1 for 2 elements correct, -1 for any adding of elements; mark final answer; condone correct but unnecessary brackets	5
10	$\begin{aligned} & x^{2}+9 x^{2}=25 \\ & 10 x^{2}=25 \\ & \\ & x= \pm(\sqrt{ } 10) / 2 \text { or. } \pm \sqrt{ }(5 / 2) \text { or } \pm 5 / \sqrt{ } 10 \text { oe } \\ & y=[\pm] 3 \sqrt{ }(5 / 2) \text { o.e. eg } y=[\pm] \sqrt{ } 22.5 \end{aligned}$	M1 M1 A2 B1	for subst for x or y attempted or $x^{2}=2.5$ o.e.; condone one error from start [allow $10 x^{2}-25=0+$ correct substn in correct formula] allow $\pm \sqrt{ } 2.5$; A1 for one value ft $3 \times$ their x value(s) if irrational; condone not written as coords.	5

Section B

\begin{tabular}{|c|c|c|c|c|c|}
\hline 11 \& ii \& \begin{tabular}{l}
\[
\begin{aligned}
\& \text { grad } \mathrm{AB}=8 / 4 \text { or } 2 \text { or } y=2 x-10 \\
\& \text { grad } \mathrm{BC}=1 /-2 \text { or }-1 / 2 \text { or } \\
\& y=-1 / 2 x+2.5 \\
\& \text { product of grads }=-1 \text { [so perp] } \\
\& \text { (allow seen or used) } \\
\& \text { midpt } \mathrm{E} \text { of } \mathrm{AC}=(6,4.5) \\
\& \mathrm{AC}^{2}=(9-3)^{2}+(8-1)^{2} \text { or } 85 \\
\& \mathrm{rad}=1 / 2 \sqrt{ } 85 \text { o.e. } \\
\& (x-6)^{2}+(y-4.5)^{2}=85 / 4 \text { o.e. } \\
\& (5-6)^{2}+(0-4.5)^{2}=1+81 / 4[= \\
\& 85 / 4] \\
\& \overrightarrow{B E}=\overrightarrow{E D}=\binom{1}{4.5}
\end{aligned}
\] \\
D has coords \((6+1,4.5+4.5) \mathrm{ft}\) or
\[
\begin{aligned}
\& (5+2,0+9) \\
\& =(7,9)
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
1
M1 \\
A1 \\
B2 \\
1 \\
M1 \\
M1 \\
A1
\end{tabular} \& \begin{tabular}{l}
or M1 for \(\mathrm{AB}^{2}=4^{2}+8^{2}\) or 80 and \(\mathrm{BC}^{2}=2^{2}+1^{2}\) or 5 and \(\mathrm{AC}^{2}=6^{2}+7^{2}\) or 85; M1 for \(A C^{2}=A B^{2}+B C^{2}\) and 1 for [Pythag.] true so \(A B\) perp to \(B C\); if 0 , allow \(G 1\) for graph of \(A, B, C\) \\
allow seen in (i) only if used in (ii); or \(\mathrm{AE}^{2}=(9-\text { their } 6)^{2}+(8-\text { their } 4.5)^{2}\) or rad. \({ }^{2}=85 / 4\) o.e. e.g. in circle eqn M1 for \((x-a)^{2}+(y-b)^{2}=r^{2}\) soi or for lhs correct some working shown; or 'angle in semicircle [\(=90^{\circ}{ }^{\prime}\) ' \\
o.e. ft their centre; or for \(\overrightarrow{B C}=\binom{-2}{1}\) \\
or (\(9-2,8+1\)); condone mixtures of vectors and coords. throughout part iii allow B3 for \((7,9)\)
\end{tabular} \& 3

6
6
3 \\
\hline 12 \& ii
iii
iv

v \& | $\begin{aligned} & \mathrm{f}(-2) \text { used } \\ & -8+36-40+12=0 \end{aligned}$ |
| :--- |
| divn attempted as far as $x^{2}+3 x$ $\begin{aligned} & x^{2}+3 x+2 \text { or }(x+2)(x+1) \\ & (x+2)(x+6)(x+1) \end{aligned}$ |
| sketch of cubic the right way up through 12 marked on y axis intercepts $-6,-2,-1$ on x axis $[x]\left(x^{2}+9 x+20\right)$ $[x](x+4)(x+5)$ $x=0,-4,-5$ | \& \[

$$
\begin{aligned}
& \hline \text { M1 } \\
& \text { A1 } \\
& \\
& \text { M1 } \\
& \text { A1 } \\
& 2 \\
& \\
& \text { G1 } \\
& \text { G1 } \\
& \text { G1 } \\
& \text { M1 } \\
& \text { M1 } \\
& \text { A1 }
\end{aligned}
$$

\] \& | or M1 for division by ($x+2$) attempted as far as $x^{3}+2 x^{2}$ then A1 for $x^{2}+7 x+$ 6 with no remainder or inspection with $b=3$ or $c=2$ found; B2 for correct answer allow seen earlier; M1 for $(x+2)(x+1)$ with 2 turning pts; no 3rd tp curve must extend to $x>0$ condone no graph for $x<-6$ or other partial factorisation |
| :--- |
| or B1 for each root found e.g. using factor theorem | \& 2

2
2
3
3 \\
\hline 13 \& ii

iii

iv \& | $\begin{aligned} & y=2 x+3 \text { drawn on graph } \\ & x=0.2 \text { to } 0.4 \text { and }-1.7 \text { to }-1.9 \\ & 1=2 x^{2}+3 x \\ & 2 x^{2}+3 x-1[=0] \end{aligned}$ |
| :--- |
| attempt at formula or completing square $x=\frac{-3 \pm \sqrt{17}}{4}$ |
| branch through (1,3), branch through ($-1,1$), approaching $y=2$ from below -1 and $1 / 2$ or ft intersection of their curve and line [tolerance 1 mm] | \& M1

A2
M1
M1

M1

A2
1
1

1 \& | 1 each; condone coords; must have line drawn for multiplying by x correctly for correctly rearranging to zero (may be earned first) or suitable step re completing square if they go on ft , but no ft for factorising |
| :--- |
| A1 for one soln and approaching $y=2$ from above and extending below x axis 1 each; may be found algebraically; ignore y coords. | \& 3

5

2
2 \\
\hline
\end{tabular}

