Mark Scheme 4751 June 2007

4751 Mark Scheme June 2007

Section A

Deci	IUII A			
1	x > -0.6 o.e. eg $-3/5 < x$ isw	3	M2 for $-3 < 5x$ or $x > \frac{3}{-5}$ or M1 for	
			$-5x < 3$ or $k < 5x$ or $-3 < kx$ [condone \le for Ms]; if 0, allow SC1 for -0.6 found	3
2	$t = \left[\pm\right] \sqrt{\frac{2s}{a}}$ o.e.	3	B2 for t omitted or $t = \sqrt{\frac{s}{\frac{1}{2}a}}$ o.e.	
			M1 for correct constructive first step in rearrangement and M1 (indep) for finding sq rt of their t^2	3
3	'If $2n$ is an even integer, then n is an odd integer'	1	or: $2n$ an even integer $\Rightarrow n$ an odd integer	
	showing wrong eg 'if n is an even integer, $2n$ is an even integer'	1	or counterexample eg $n = 2$ and $2n = 4$ seen [in either order]	2
4	<i>c</i> = 6	1		
	k = -7	2	M1 for $f(2) = 0$ used or for long division as	
	4		far as $x^3 - 2x^2$ in working	3
5	$(i) 4x^4y$	2	M1 for two elements correct; condone <i>y</i> ¹	
	(ii) 32	2	M1 for $\left(\frac{2}{1}\right)^5$ or 2^5 soi or $\left(\frac{1}{32}\right)^{-1}$ or $\frac{1}{\frac{1}{32}}$	4
6	$-720 [x^3]$	4	B3 for 720; M1 for each of 3^2 and $\pm 2^3$ or $(-2x)^3$ or $(2x)^3$,	
			and M1 for 10 or $(5\times4\times3)/(3\times2\times1)$ or for 1 5 10 10 5 1 seen but not for ${}^{5}C_{3}$	4
7	$\frac{-5}{10}$ o.e. isw	3	M1 for $4x + 5 = 2x \times -3$ and	
	10 0.6. 15 w		M1 for $10x = -5$ o.e. or M1 for	
			$2 + \frac{5}{2x} = -3 \text{ and M1 for } \frac{5}{2x} = -5 \text{ o.e.}$ M1 for $7\sqrt{2}$ or $5\sqrt{2}$ seen	3
8	(i) $2\sqrt{2}$ or $\sqrt{8}$	2	M1 for $7\sqrt{2}$ or $5\sqrt{2}$ seen	
	(ii) $30 - 12\sqrt{5}$	3	M1 for attempt to multiply num. and	
			denom. by $2 - \sqrt{5}$ and M1 (dep) for denom	
			-1 or $4-5$ soi or for numerator $12\sqrt{5}-30$	5
9	(i) ±5	2	B1 for one soln	
	(ii) $y = (x-2)^2 - 4$ or $y = x^2 - 4x$ o.e.	2	M1 if y omitted or for $y = (x + 2)^2 - 4$ or $y = x^2 + 4x$ o.e.	4
10	(i) $\frac{1}{2} \times (x+1)(2x-3) = 9$ o.e.	M1	for clear algebraic use of ½ bh; condone	-
			(x+1)(2x-3) = 18	
	$2x^2 - x - 3 = 18$ or $x^2 - \frac{1}{2}x - \frac{3}{2} = 9$	A1	allow <i>x</i> terms uncollected.	
	(ii) (2x - 7)(x + 2)	D 1	NB ans $2x^2 - x - 21 = 0$ given	
	(ii) $(2x-7)(x+3)$ -3 and 7/2 o.e. or ft their factors	B1 B1	NB B0 for formula or comp. sq. if factors seen, allow omission of -3	
	base 4, height 4.5 o.e. cao	B1	B0 if also give $b = -9$, $h = -2$	5
	case i, inergite ite ster cas		2011 41150 81100 2,11 2	·

4751 Mark Scheme June 2007

Section B

	IUII D		1		
11	i	grad AC = $\frac{7-3}{3-1}$ or 4/2 o.e.[= 2]	M1	not from using – ½	
		so grad AT = $-\frac{1}{2}$	M1	or ft their grad AC [for use of $m_1m_2 = -1$]	
		eqn of AT is $y - 7 = -\frac{1}{2}(x - 3)$	M1	or subst (3, 7) in $y = -\frac{1}{2}x + c$ or in $2y + x = 17$; allow ft from their grad of AT, except 2 (may be AC not AT)	
		one correct constructive step towards $x + 2y = 17$ [ans given]	M1	or working back from given line to $y = -\frac{1}{2}x + 8.5$ o.e.	4
	ii	x + 2(2x - 9) = 17	M1	attempt at subst for x or y or elimination	
		5x - 18 = 17 or 5x = 35 o.e. x = 7 and y = 5 [so (7, 5)]	A1 B1	allow $2.5x = 17.5$ etc graphically: allow M2 for both lines correct or showing $(7, 5)$ fits both lines	3
	iii	$(x-1)^{2} + (2x-12)^{2} = 20$ $5x^{2} - 50x + 125[=0]$ $(x-5)^{2} = 0$ equal roots so tangent	M1 M1 A1 B1	subst $2x - 9$ for y [oe for x] rearranging to 0; condone one error showing 5 is root and only root explicit statement of condition needed (may be obtained earlier in part) or showing line is perp. to radius at point of contact	
		(5, 1)	B1	condone $x = 5$, $y = 1$	
		<u>or</u>			
		$y-3 = -\frac{1}{2}(x-1)$ o.e. seen	M1	or if $y = 2x - 9$ is tgt then line through C with gradient $-\frac{1}{2}$ is radius	
		subst or elim. with $y = 2x - 9$ x = 5 (5,1)	M1 A1 B1		
		showing (5, 1) on circle	B1	or showing distance between $(1, 3)$ and $(5, 1) = \sqrt{20}$	5

4751 Mark Scheme June 2007

	1 -	1 2		T	1
12	i	$4(x-3)^2-9$	4	1 for $a = 4$, 1 for $b = 3$, 2 for $c = -9$ or 27	
				M1 for $27 - 4 \times 3^2$ or $\frac{27}{4} - 3^2 [= -\frac{9}{4}]$	4
	ii	min at $(3, -9)$ or ft from (i)	B2	1 for each coord [e.g. may start again	2
				and use calculus to obtain $x = 3$	
	iii	(2x-3)(2x-9)	M1	attempt at factorising or formula or use of their (i) to sq rt stage	
		x = 1.5 or 4.5 o.e.	A2	A1 for 1 correct; accept fractional equivs	
				eg 36/8 and 12/8	3
	iv	sketch of quadratic the right way up	M1		
		crosses x axis at 1.5 and 4.5 or ft	A1	allow unsimplified	
		crosses y axis at 27	B1	shown on graph or in table etc; condone not extending to negative <i>x</i>	3
13	i	$2x^3 + 5x^2 + 4x - 6x^2 - 15x - 12$	1	for correct interim step; allow correct	
13	1	2x + 3x + 4x + 0x + 13x + 12	1	long division of $f(x)$ by $(x-3)$ to obtain	
				$2x^2 + 5x + 4$ with no remainder	
		3 is root use of $b^2 - 4ac$	B1 M1	allow $f(3) = 0$ shown or equivalents for M1 and A1 using	
		use of $b - 4ac$ $5^2 - 4 \times 2 \times 4$ or -7 and [negative]	A1	formula or completing square	
		implies no real root			4
	ii	divn of $f(x) + 22$ by $x - 2$ as far as $2x^3 - 4x^2$ used	M1	or inspection eg $(x-2)(2x^25)$	
		$2x^2 + 3x - 5$ obtained	A1		
		(2x+5)(x-1) 1 and -2.5 o.e.	M1 A1	attempt at factorising/quad. formula/compl. sq.	
			+A1		
		<u>or</u>			
		$2 \times 2^3 - 2^2 - 11 \times 2 - 12$	M1	or equive using $f(x) + 22$	
		$\begin{vmatrix} 16-4-22-12 \\ x=1 \text{ is a root obtained by factor thm} \end{vmatrix}$	A1 B1	not just stated	
		x = -2.5 obtained as root	B2		5
)
	iii	cubic right way up crossing x axis only once	G1 G1	must have turning points must have max and min below x axis	
		(3, 0) and $(0, -12)$ shown	G1	at intns with axes or in working (indep of cubic shape); ignore other intns	3
				cubic snape), ignore other muis	3