Mark Scheme 4751 June 2007

Section A

1	$x>-0.6$ o.e. eg $-3 / 5<x$ isw	3	M2 for $-3<5 x$ or $x>\frac{3}{-5}$ or M1 for $-5 x<3$ or $k<5 x$ or $-3<k x$ [condone \leq for Ms]; if 0 , allow SC1 for -0.6 found	3
2	$t=[\pm] \sqrt{\frac{2 s}{a}} \text { o.e. }$	3	B2 for t omitted or $t=\sqrt{\frac{s}{\frac{1}{2} a}}$ o.e. M1 for correct constructive first step in rearrangement and M1 (indep) for finding sq rt of their t^{2}	3
3	'If $2 n$ is an even integer, then n is an odd integer’ showing wrong eg 'if n is an even integer, $2 n$ is an even integer'	1 1	or: $2 n$ an even integer $\Rightarrow n$ an odd integer or counterexample eg $n=2$ and $2 n=4$ seen [in either order]	2
4	$\begin{aligned} & c=6 \\ & k=-7 \end{aligned}$	$\begin{array}{\|l\|} \hline 1 \\ 2 \\ \hline \end{array}$	M 1 for $\mathrm{f}(2)=0$ used or for long division as far as $x^{3}-2 x^{2}$ in working	3
5	$\begin{aligned} & \text { (i) } 4 x^{4} y \\ & \text { (ii) } 32 \end{aligned}$	$\begin{array}{\|l\|} 2 \\ 2 \end{array}$	M1 for two elements correct; condone y^{1} M1 for $\left(\frac{2}{1}\right)^{5}$ or 2^{5} soi or $\left(\frac{1}{32}\right)^{-1}$ or $\frac{1}{\frac{1}{32}}$	4
6	$-720\left[x^{3}\right]$	4	B3 for 720; M1 for each of 3^{2} and $\pm 2^{3}$ or $(-2 x)^{3}$ or $(2 x)^{3}$, and M1 for 10 or $(5 \times 4 \times 3) /(3 \times 2 \times 1)$ or for 15101051 seen but not for ${ }^{5} \mathrm{C}_{3}$	4
7	$\frac{-5}{10} \text { o.e. isw }$	3	M1 for $4 x+5=2 x \times-3$ and M1 for $10 x=-5$ o.e. or M1 for $2+\frac{5}{2 x}=-3$ and M 1 for $\frac{5}{2 x}=-5$ o.e.	3
8	(i) $2 \sqrt{ } 2$ or $\sqrt{ } 8$ (ii) $30-12 \sqrt{ } 5$	$\begin{array}{\|l} 2 \\ 3 \end{array}$	M1 for $7 \sqrt{ } 2$ or $5 \sqrt{ } 2$ seen M1 for attempt to multiply num. and denom. by $2-\sqrt{ } 5$ and M1 (dep) for denom -1 or $4-5$ soi or for numerator $12 \sqrt{5}-30$	5
9	(i) ± 5 (ii) $y=(x-2)^{2}-4$ or $y=x^{2}-4 x$ o.e. isw	$\begin{array}{\|l\|} \hline 2 \\ 2 \end{array}$	B1 for one soln M1 if y omitted or for $y=(x+2)^{2}-4$ or $y=x^{2}+4 x$ o.e.	4
10	(i) $1 / 2 \times(x+1)(2 x-3)=9$ o.e. $2 x^{2}-x-3=18 \text { or } x^{2}-1 / 2 x-3 / 2=9$ (ii) $(2 x-7)(x+3)$ -3 and $7 / 2$ o.e. or ft their factors base 4 , height 4.5 o.e. cao	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & \\ & \mathrm{~B} 1 \\ & \mathrm{~B} 1 \\ & \mathrm{~B} 1 \\ & \hline \end{aligned}$	for clear algebraic use of $1 / 2 \mathrm{bh}$; condone $(x+1)(2 x-3)=18$ allow x terms uncollected. NB ans $2 x^{2}-x-21=0$ given NB B0 for formula or comp. sq. if factors seen, allow omission of -3 B0 if also give $b=-9, h=-2$	5

Section B

\begin{tabular}{|c|c|c|c|c|c|}
\hline 12 \& ii
iii
iv \& \begin{tabular}{l}
\[
4(x-3)^{2}-9
\] \\
min at (\(3,-9\)) or ft from (i) \\
\((2 x-3)(2 x-9)\) \\
\(x=1.5\) or 4.5 o.e. \\
sketch of quadratic the right way up \\
crosses \(x\) axis at 1.5 and 4.5 or ft crosses \(y\) axis at 27
\end{tabular} \& \begin{tabular}{l}
4 \\
B2 \\
M1 \\
A2 \\
M1 \\
A1 \\
B1
\end{tabular} \& \begin{tabular}{l}
1 for \(a=4,1\) for \(b=3\), 2 for \(c=-9\) or M1 for \(27-4 \times 3^{2}\) or \(\frac{27}{4}-3^{2}\left[=-\frac{9}{4}\right]\) \\
1 for each coord [e.g. may start again and use calculus to obtain \(x=3\)] \\
attempt at factorising or formula or use of their (i) to sq rt stage \\
A1 for 1 correct; accept fractional equivs eg \(36 / 8\) and \(12 / 8\) \\
allow unsimplified shown on graph or in table etc; condone not extending to negative \(x\)
\end{tabular} \& 4
2 \\
\hline 13 \& ii

iii \& \begin{tabular}{l}
$$
2 x^{3}+5 x^{2}+4 x-6 x^{2}-15 x-12
$$

3 is root use of $b^{2}-4 a c$ $5^{2}-4 \times 2 \times 4$ or -7 and [negative] implies no real root

divn of $\mathrm{f}(x)+22$ by $x-2$ as far as $2 x^{3}-4 x^{2}$ used

$2 x^{2}+3 x-5$ obtained

$(2 x+5)(x-1)$

1 and -2.5 o.e.

or
$$
2 \times 2^{3}-2^{2}-11 \times 2-12
$$

16-4-22-12

$x=1$ is a root obtained by factor thm $x=-2.5$ obtained as root

cubic right way up crossing x axis only once $(3,0)$ and $(0,-12)$ shown

 \&

M1

A1

M1

A1

M1

A1

$+\mathrm{A} 1$

M1

A1

B1

B2

G1

G1

G1

 \&

for correct interim step; allow correct long division of $\mathrm{f}(x)$ by $(x-3)$ to obtain $2 x^{2}+5 x+4$ with no remainder

allow $f(3)=0$ shown or equivalents for M1 and A1 using formula or completing square

or inspection eg $(x-2)\left(2 x^{2} \ldots . .-5\right)$

attempt at factorising/quad. formula/ compl. sq.

or equivs using $\mathrm{f}(x)+22$

not just stated

must have turning points must have max and min below x axis at intns with axes or in working (indep of cubic shape); ignore other intns
\end{tabular} \& 5

3

\hline
\end{tabular}

