4751 (C1) Introduction to Advanced Mathematics

Section A

1	$x>6 / 4$ o.e. isw	2	M1 for $4 x>6$ or for $6 / 4$ o.e. found or for their final ans ft their $4 x>k$ or $k x>6$	2
2	(i) $(0,4)$ and $(6,0)$ (ii) $-4 / 6$ o.e. or ft their (i) isw	2 2	1 each; allow $x=0, y=4$ etc; condone $x=6, y=4$ isw but 0 for $(6,4)$ with no working 1 for $-\frac{4}{6} x$ or $4 /-6$ or $4 / 6$ o.e. or ft (accept 0.67 or better) 0 for just rearranging to $y=-\frac{2}{3} x+4$	4
3	(i) 0 or $-3 / 2$ o.e. (ii) $k<-9 / 8$ o.e. www	2 3	1 each M2 for $3^{2}(-)(-8 k)<0$ o.e. or $-9 / 8$ found or M1 for attempted use of $b^{2}-4 a c$ (may be in quadratic formula); SC: allow M1 for $9-8 k<0$ and M1 ft for $k>9 / 8$	5
4	(i) T (ii) E (iii) T (iv) F	3	3 for all correct, 2 for 3 correct. 1 for 2 correct	3
5	$y(x-2)=(x+3)$ $x y-2 y=x+3$ or $\mathrm{ft}[\mathrm{ft}$ from earlier errors if of comparable difficulty - no ft if there are no $x y$ terms] $\begin{aligned} & x y-x=2 y+3 \text { or } \mathrm{ft} \\ & {[x=] \frac{2 y+3}{y-1} \text { o.e. or } \mathrm{ft}} \end{aligned}$ alt method: $\begin{aligned} y & =1+\frac{5}{x-2} \\ y-1 & =\frac{5}{x-2} \\ x-2 & =\frac{5}{y-1} \\ x & =2+\frac{5}{y-1} \end{aligned}$	M1 M1	for multiplying by $x-2$; condone missing brackets for expanding bracket and being at stage ready to collect x terms for collecting x and 'other' terms on opposite sides of eqn for factorising and division for either method: award 4 marks only if fully correct	4

\begin{tabular}{|c|c|c|c|c|}
\hline 6 \& \begin{tabular}{l}
(i) 5 www \\
(ii) \(8 x^{10} y^{13} z^{4}\) or \(2^{3} x^{10} y^{13} z^{4}\)
\end{tabular} \& \begin{tabular}{l}
\[
2
\] \\
3
\end{tabular} \& \begin{tabular}{l}
allow 2 for \(\pm 5\); M1 for \(25^{1 / 2}\) seen or for \(1 / 5\) seen or for using \(25^{1 / 2}=5\) with another error (ie M1 for coping correctly with fraction and negative index or with square root) \\
mark final answer; B2 for 3 elements correct, B1 for 2 elements correct; condone multn signs included, but -1 from total earned if addn signs
\end{tabular} \& 5 \\
\hline 7 \& \begin{tabular}{l}
(i) \(\frac{5-\sqrt{3}}{22}\) or \(\frac{5+(-1) \sqrt{3}}{22}\) or \(\frac{5-1 \sqrt{3}}{22}\) \\
(ii) \(37-12 \sqrt{ } 7\) isw www
\end{tabular} \& 2

3 \& | or $a=5, b=-1, c=22$; M1 for attempt to multiply numerator and denominator by $5-\sqrt{3}$ |
| :--- |
| 2 for 37 and 1 for $-12 \sqrt{ } 7$ or M1 for 3 correct terms from $9-6 \sqrt{ } 7-6 \sqrt{ } 7+28$ or $9-3 \sqrt{ } 28-3 \sqrt{ } 28+28$ or $9-\sqrt{ } 252-$ $\sqrt{ } 252+28$ o.e. eg using $2 \sqrt{ } 63$ or M2 for $9-12 \sqrt{ } 7+28$ or $9-6 \sqrt{ } 28+$ 28 or $9-2 \sqrt{ } 252+28$ or $9-\sqrt{ } 1008+$ 28 o.e.; 3 for $37-\sqrt{ } 1008$ but not other equivs | \& 5

\hline 8 \& -2000 www \& 4 \& | M3 for $10 \times 5^{2} \times(-2[x])^{3}$ o.e. or M2 for two of these elements or M1 for 10 or $(5 \times 4 \times 3) /(3 \times 2 \times 1)$ o.e. used $\left[{ }^{5} \mathrm{C}_{3}\right.$ is not sufficient] or for 15101051 seen; |
| :--- |
| or B3 for 2000; |
| condone x^{3} in ans; |
| equivs: M3 for e.g $5^{5} \times 10 \times\left(-\frac{2}{5}[x]\right)^{3}$ |
| o.e. [$\left[5^{5}\right.$ may be outside a bracket for whole expansion of all terms], M2 for two of these elements etc similarly for factor of 2 taken out at start | \& 4

\hline 9 \& \[
$$
\begin{aligned}
& (y-3)(y-4)[=0] \\
& y=3 \text { or } 4 \text { cao } \\
& x= \pm \sqrt{3} \text { or } \pm 2 \text { cao }
\end{aligned}
$$

\] \& | M1 |
| :--- |
| A1 B2 | \& | for factors giving two terms correct or attempt at quadratic formula or completing square or B2 (both roots needed) |
| :--- |
| B1 for 2 roots correct or $f t$ their y (condone $\sqrt{ } 3$ and $\sqrt{ } 4$ for B1) | \& 4

\hline
\end{tabular}

Section B

