4751 (C1) Introduction to Advanced Mathematics

Section A

1	$(0,14)$ and $(14 / 4,0)$ o.e. isw	4	M2 for evidence of correct use of gradient with $(2,6)$ eg sketch with 'stepping' or $y-6=-4(x-2)$ seen or y $=-4 x+14$ o.e. or M1 for $y=-4 x+c$ [accept any letter or number] and M 1 for $6=-4 \times 2+c$; A1 for $(0,14)$ [$c=14$ is not sufficient for A1] and A1 for (14/4, 0) o.e.; allow when $x=0, y=14$ etc isw	4
2	$[a=] \frac{2(s-u t)}{t^{2}}$ o.e. as final answer [condone $[a=] \frac{(s-u t)}{0.5 t^{2}}$]	3	M1 for each of 3 complete correct steps, ft from previous error if equivalent difficulty [eg dividing by t does not count as step - needs to be by t^{2}] [$a=] \frac{(s-u t)}{\frac{1}{2} t^{2}}$ gets M2 only (similarly other triple-deckers)	3
3	10 www	3	M1 for $\mathrm{f}(3)=1$ soi and A1 for $31-3 k=1$ or $27-3 k=-3$ o.e. [a correct 3-term or 2-term equation] long division used: M1 for reaching $(9-k) x+4$ in working and A1 for $4+3(9-k)=1$ o.e. equating coeffts method: M2 for $(x-3)\left(x^{2}+3 x-1\right)[+1]$ o.e. (from inspection or division)	3
4	$x<0$ or $x>6$ (both required)	2	B1 each; if B 0 then M 1 for 0 and 6 identified;	2
5	(i) 10 www (ii) 80 www or $\mathrm{ft} 8 \times$ their (i)	2 2	M1 for $\frac{5 \times 4 \times 3}{3 \times 2(\times 1)}$ or $\frac{5 \times 4}{2(\times 1)}$ or for $\begin{array}{lllllll}1 & 5 & 10 & 10 & 5 & 1 & \text { seen }\end{array}$ B2 for $80 x^{3}$; M1 for 2^{3} or $(2 x)^{3}$ seen	4
				16

6	any general attempt at n being odd and n being even even	M1	M0 for just trying numbers, even if some odd, some even odd implies n^{3} odd and odd - odd even n even implies n^{3} even and even - even $=$ even	A1

Section B

\begin{tabular}{|c|c|c|c|c|c|}
\hline 12 \& iA \& expansion of one pair of brackets correct 6 term expansion \& M1
M1 \& \begin{tabular}{l}
eg \([(x+1)]\left(x^{2}-6 x+8\right)\); need not be simplified eg \(x^{3}-6 x^{2}+8 x+x^{2}-6 x+8\); or M2 for correct 8 term expansion: \(x^{3}-4 x^{2}+x^{2}-2 x^{2}+8 x-4 x-2 x+\) \(8, \mathrm{M} 1\) if one error \\
allow equivalent marks working backwards to factorisation, by long division or factor theorem etc or M1 for all three roots checked by factor theorem and M1 for comparing coeffts of \(x^{3}\)
\end{tabular} \& 2 \\
\hline \& iB \& cubic the correct way up \(x\)-axis: -1, 2, 4 shown \(y\)-axis 8 shown \& \begin{tabular}{l}
G1 \\
G1 \\
G1
\end{tabular} \& \begin{tabular}{l}
with two tps and extending beyond the axes at 'ends' \\
ignore a second graph which is a translation of the correct graph
\end{tabular} \& 3 \\
\hline \& iC \& \[
\begin{aligned}
\& {[y=](x-2)(x-5)(x-7) \text { isw or }} \\
\& (x-3)^{3}-5(x-3)^{2}+2(x-3)+8 \\
\& \text { isw or } x^{3}-14 x^{2}+59 x-70
\end{aligned}
\]
\[
(0,-70) \text { or } y=-70
\] \& 2

1 \& M1 if one slip or for $[y=] f(x-3)$ or for roots identified at 2, 5, 7 or for translation 3 to the left allow M1 for complete attempt: $(x+4)(x+$ 1) $(x-1)$ isw or $(x+3)^{3}-5(x+3)^{2}+2(x+3)+8$ isw allow 1 for $(0,-4)$ or $y=-4$ after $\mathrm{f}(x$ +3) used \& 3

\hline \& ii \& $$
\begin{aligned}
& 27-45+6+8=-4 \text { or } 27-45+ \\
& 6+12=0
\end{aligned}
$$ \& B1 \& or correct long division of $x^{3}-5 x^{2}+$ $2 x+12$ by $(x-3)$ with no remainder or of $x^{3}-5 x^{2}+2 x+8$ with rem -4 \&

\hline \& \& long division of $\mathrm{f}(x)$ or their $\mathrm{f}(x)+4$ by $(x-3)$ attempted as far as $x^{3}-$ $3 x^{2}$ in working

$$
x^{2}-2 x-4 \text { obtained }
$$ \& M1

A1 \& or inspection with two terms correct eg $(x-3)\left(x^{2} \ldots \ldots \ldots-4\right)$ \&

\hline \& \& $$
\begin{aligned}
& {[x=] \frac{2 \pm \sqrt{(-2)^{2}-4 \times(-4)}}{2} \text { or }} \\
& (x-1)^{2}=5
\end{aligned}
$$ \& M1 \& dep on previous M1 earned; for attempt at formula or comp square on their other 'factor' \&

\hline \& \& $\frac{2 \pm \sqrt{20}}{2}$ o.e. isw or $1 \pm \sqrt{5}$ \& A1 \& \& 5
13

\hline
\end{tabular}

