GCE

Mathematics (MEI)

Advanced Subsidiary GCE 4751

Mark Scheme for June 2010

SECTION A

1	$y=3 x+c \text { or } y-y_{1}=3\left(x-x_{1}\right)$ $y-5=$ their $m(x-4)$ o.e. $y=3 x-7$ or simplified equiv.	M1 M1 A1	allow M1 for 3 clearly stated/ used as gradient of required line or $(4,5)$ subst in their $y=m x+c$; allow M1 for $y-5=m(x-4)$ o.e. condone $y=3 x+c$ and $c=-7$ or B3 www
2	(i) $250 a^{6} b^{7}$ (ii) 16 cao (iii) 64	2 1 2	B1 for two elements correct; condone multiplication signs left in SC1 for eg $250+a^{6}+b^{7}$ condone ± 64 M1 for $[\pm] 4^{3}$ or for $\sqrt{4096}$ or for only -64
3	$\begin{aligned} a c & =\sqrt{y}-5 & \text { o.e. } \\ a c+5 & =\sqrt{y} & \text { o.e. } \\ {[y} & =](a c+5)^{2} & \text { o.e. isw } \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { M1 } \end{aligned}$	M1 for each of 3 correct or ft correct steps s.o.i. leading to y as subject or some/all steps may be combined; allow B3 for $[y=](a c+5)^{2}$ o.e. isw or $\mathbf{B 2}$ if one error
4 (i)	$2-2 x>6 x+5$ $-3>8 x$ o.e. or ft $x<-3 / 8$ o.e. or ft isw	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { M1 } \end{aligned}$	or $1-x>3 x+2.5$ for collecting terms of their inequality correctly on opposite sides eg $-8 x>3$ allow $\mathbf{B} 3$ for correct inequality found after working with equation allow SC2 for $-3 / 8$ o.e. found with equation or wrong inequality
4 (ii)	$-4<x<1 / 2$ o.e.	2	accept as two inequalities M1 for one 'end' correct or for -4 and $1 / 2$
5 (i)	$7 \sqrt{3}$	2	M1 for $\sqrt{48}=4 \sqrt{3}$ or $\sqrt{27}=3 \sqrt{3}$

5 (ii)	$\frac{10+15 \sqrt{2}}{7}$ www isw	3	B1 for 7 [B0 for 7 wrongly obtained] and $\mathbf{B} 2$ for $10+15 \sqrt{2}$ or $\mathbf{B} 1$ for one term of numerator correct; if B0, then M1 for attempt to multiply num and denom by $3+\sqrt{2}$
6	$\begin{aligned} & 5+2 k \text { soi } \\ & k=12 \\ & \text { attempt at } \mathrm{f}(3) \\ & 27+36+m=59 \text { o.e. } \\ & m=-4 \text { cao } \end{aligned}$	M1 A1 M1 A1 A1	allow M1 for expansion with $5 x^{3}+$ $2 k x^{3}$ and no other x^{3} terms or M1 for (29-5) / 2 soi must substitute 3 for x in cubic not product or long division as far as obtaining x^{2} $+3 x$ in quotient or from division $m-(-63)=59$ o.e. or for $27+3 k+m=59$ or ft their k
7	$1+2 x+\frac{3}{2} x^{2}+\frac{1}{2} x^{3}+\frac{1}{16} x^{4}$ oe (must be simplified) isw	4	B3 for 4 terms correct, or $\mathbf{B} 2$ for 3 terms correct or for all correct but unsimplified (may be at an earlier stage, but factorial or ${ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}$ notation must be expanded/worked out) or $\mathbf{B 1}$ for $1,4,6,4,1$ soi or for $1+\ldots+\frac{1}{16} x^{4}$ [must have at least one other term]
8	$5(x+2)^{2}-14$	4	```B1 for \(a=5\), and \(\mathbf{B 1}\) for \(b=2\) and B2 for \(c=-14\) or \(\mathbf{M 1}\) for \(c=6-\) their \(a b^{2}\) or M1 for [their \(a\)](6/their \(a\) - their \(b^{2}\)) [no ft for \(a=1\)]```
9	mention of -5 as a square root of 25 or $(-5)^{2}=25$ $\begin{array}{\|l} -5-5 \neq 0 \text { o.e. } \\ \text { or } x+5=0 \end{array}$	M1 M1	condone $-5^{2}=25$ or, dep on first M1 being obtained, allow M1 for showing that 5 is the only soln of $x-5=0$ allow M2 for $\begin{aligned} & x^{2}-25=0 \\ & (x+5)(x-5)[=0] \\ & \text { so } x-5=0 \text { or } x+5=0 \end{aligned}$

SECTION B

10 (i)	$(2 x-3)(x+1)$ $x=3 / 2 \text { and }-1 \text { obtained }$	M2 B1	M1 for factors with one sign error or giving two terms correct allow M1 for $2(x-1.5)(x+1)$ with no better factors seen or ft their factors
10 (ii)	graph of quadratic the correct way up and crossing both axes crossing x-axis only at $3 / 2$ and -1 or ft from their roots in (i), or their factors if roots not given crossing y-axis at -3	B1 B1 B1	for $x=3 / 2$ condone 1 and 2 marked on axis and crossing roughly halfway between; intns must be shown labelled or worked out nearby
10 (iii)	use of $b^{2}-4 a c$ with numbers subst (condone one error in substitution) (may be in quadratic formula) $25-40<0 \text { or }-15 \text { obtained }$	M1 A1	may be in formula or $(x-2.5)^{2}=6.25-10$ or $(x-2.5)^{2}+$ $3.75=0$ oe (condone one error) or $\sqrt{-15}$ seen in formula or $(x-2.5)^{2}=-3.75$ oe or $x=2.5 \pm \sqrt{-3.75}$ oe
10 (iv)	$2 x^{2}-x-3=x^{2}-5 x+10 \text { o.e. }$ $x^{2}+4 x-13[=0]$ use of quad. formula on resulting eqn (do not allow for original quadratics used) $-2 \pm \sqrt{17} \text { сао }$	M1 M1 M1 A1	attempt at eliminating y by subst or subtraction or $(x+2)^{2}=17$; for rearranging to form $a x^{2}+b x+c[=0]$ or to completing square form condone one error for each of $2^{\text {nd }}$ and $3^{\text {rd }} \mathbf{M 1 s}$ or $x+2= \pm \sqrt{17}$ o.e. 2nd and 3rd M1s may be earned for good attempt at completing square as far as roots obtained

\begin{tabular}{|c|c|c|c|}
\hline 11 (i) \& \[
\begin{aligned}
\& \operatorname{grad} \mathrm{AB}=\frac{1-3}{5-(-1)}[=-1 / 3] \\
\& y-3=\text { their } \operatorname{grad}(x-(-1)) \text { or } \\
\& y-1=\text { their } \operatorname{grad}(x-5)
\end{aligned}
\]
\[
y=-1 / 3 x+8 / 3 \text { or } 3 y=-x+8 \text { o.e }
\] isw \& \begin{tabular}{l}
M1 \\
M1 \\
A1
\end{tabular} \& \begin{tabular}{l}
or use of \(y=\) their gradient \(x+c\) with coords of A or B or M2 for \(\frac{y-3}{1-3}=\frac{x-(-1)}{5-(-1)}\) o.e.
\[
\text { o.e. eg } x+3 y-8=0 \text { or } 6 y=16-
\] \(2 x\) \\
allow B3 for correct eqn www
\end{tabular} \\
\hline 11 (ii) \& \begin{tabular}{l}
when \(y=0, x=8\); when \(x=0\), \(y=8 / 3\) or ft their (i) \\
[Area \(=] 1 / 2 \times 8 / 3 \times 8\) o.e. cao isw
\end{tabular} \& M1 \& \begin{tabular}{l}
allow \(y=8 / 3\) used without explanation if already seen in eqn in (i) \\
NB answer 32/3 given; allow \(4 \times 8 / 3\) if first M1 earned; or M1 for
\[
\int_{0}^{8}\left[\frac{1}{3}(8-x)\right] \mathrm{d} x=\left[\frac{1}{3}\left(8 x-\frac{1}{2} x^{2}\right)\right]_{0}^{8}
\] \\
and M1 dep for \(\frac{1}{3}(64-32[-0])\)
\end{tabular} \\
\hline 11 (iii) \& \begin{tabular}{l}
grad perp \(=-1 /\) grad \(A B\) stated, or used after their grad AB stated in this part \\
midpoint \([\) of AB\(]=(2,2)\) \\
\(y-2=\) their grad perp \((x-2)\) or ft their midpoint \\
alt method working back from ans: \\
grad perp \(=-1 /\) grad \(A B\) and showing/stating same as given line \\
finding intn of their
\[
y=-1 / 3 x-8 / 3 \text { and } y=3 x-4 \text { is }
\] \((2,2)\) \\
showing midpt of \(A B\) is \((2,2)\)
\end{tabular} \& M1
M1
M1

or
M1
M1

M1 \& | or showing $3 \times-1 / 3=-1$ if (i) is wrong, allow the first M1 here ft , provided the answer is correct ft |
| :--- |
| must state 'midpoint' or show working |
| for M3 this must be correct, starting from grad $\mathrm{AB}=-1 / 3$, and also needs correct completion to given ans $y=3 x-4$ |
| mark one method or the other, to benefit of candidate, not a mixture |
| eg stating $-1 / 3 \times 3=-1$ |
| or showing that $(2,2)$ is on $y=3 x-$ 4 , having found $(2,2)$ first |
| [for both methods: for M3 must be fully correct] |

\hline
\end{tabular}

11 (iv)	eqn is $(x-3)^{2}+(y-5)^{2}=20$ or ft their r and y-coord of centre	M1 M1 A1 B1	or using $(-1-3)^{2}+(3-b)^{2}=(5-$ $3)^{2}+(1-b)^{2}$ and finding $(3,5)$ or $(-1-3)^{2}+(3-5)^{2}$ or ft their centre using A or B condone $(x-3)^{2}+(y-b)^{2}=r^{2}$ o.e. or $(x-3)^{2}+(y \text { - their } 5)^{2}=r^{2}$ o.e. (may be seen earlier)
12 (i)	trials of at calculating $\mathrm{f}(x)$ for at least one factor of 30 details of calculation for $f(2)$ or $f(-3)$ or $f(-5)$ attempt at division by $(x-2)$ as far as $x^{3}-2 x^{2}$ in working correctly obtaining $x^{2}+8 x+15$ factorising a correct quadratic factor $(x-2)(x+3)(x+5)$	M1 A1 M1 A1 M1 A1	M0 for division or inspection used or equiv for $(x+3)$ or $(x+5)$; or inspection with at least two terms of quadratic factor correct or B2 for another factor found by factor theorem for factors giving two terms of quadratic correct; M0 for formula without factors found condone omission of first factor found; ignore ' $=0$ ' seen allow last four marks for $(x-2)(x+3)(x+5)$ obtained; for all 6 marks must see factor theorem use first
12 (ii)	sketch of cubic right way up, with two turning points values of intns on x axis shown, correct ($-5,-3$, and 2) or ft from their factors/ roots in (i) y-axis intersection at -30	B1 B1 B1	0 if stops at x-axis on graph or nearby in this part mark intent for intersections with both axes or $x=0, y=-30$ seen in this part if consistent with graph drawn

12 (iii)	$(x-1)$ substituted for x in either form of eqn for $y=\mathrm{f}(x)$ $(x-1)^{3}$ expanded correctly (need not be simplified) or two of their factors multiplied correctly correct completion to given answer [condone omission of ' $y=$ ']	M1 M1 dep M1	correct or ft their (i) or (ii) for factorised form; condone one error; allow for new roots stated as $-4,-2$ and 3 or ft or M1 for correct or correct ft multiplying out of all 3 brackets at once, condoning one error $\left[x^{3}-3 x^{2}\right.$ $\left.+4 x^{2}+2 x^{2}+8 x-6 x-12 x-24\right]$ unless all 3 brackets already expanded, must show at least one further interim step allow SC1 for $(x+1)$ subst and correct exp of $(x+1)^{3}$ or two of their factors ft or, for those using given answer: M1 for roots stated or used as $-4,-2$ and 3 or ft A1 for showing all 3 roots satisfy given eqn B1 for comment re coefft of x^{3} or product of roots to show that eqn of translated graph is not a multiple of RHS of given eqn

Section B Total: 36

