

Mathematics (MEI)

Advanced Subsidiary GCE 4751

Introduction to Advanced Mathematics (C1)

Mark Scheme for June 2010

PMT

PMT

SECTION A

1	$y = 3x + c \text{ or } y - y_1 = 3(x - x_1)$	M1	allow M1 for 3 clearly stated/ used as gradient of required line
			gradient of required line
	y - 5 = their $m(x - 4)$ o.e.	M1	or (4, 5) subst in their $y = mx + c$; allow M1 for $y = 5 = m(x - 4)$ o e
	y = 3x - 7 or simplified equiv.	Al	condone $y = 3x + c$ and $c = -7$ or B3 www
2	(200 617		
	(1) 250 <i>a</i> b	2	multiplication signs left in
	(ii) 16 ano	1	SC1 for eg $250 + a^6 + b^7$
	(11) 10 cao	1	
	(iii) 64	2	condone ± 64
			MIT for $[\pm]4$ or for $\sqrt{4096}$ or for only -64
3	$ac = \sqrt{y-5}$ o.e.	M1	M1 for each of 3 correct or ft correct steps s.o.i. leading to v as subject
	$ac+5 = \sqrt{y}$ o.e.	M1	1 0 7 5
	$[y =](ac + 5)^2$ o.e. isw	M1	or some/all steps may be combined;
			allow B3 for $[y =](ac+5)^2$ o.e. isw
			or B2 if one error
4 (i)	2 - 2x > 6x + 5	M1	or $1 - x > 3x + 2.5$
	-3 > 8x o.e. or ft	M1	for collecting terms of their
			inequality correctly on opposite sides $eg - 8r > 3$
	x < -3/8 o.e. or ft isw	M1	allow B3 for correct inequality found
			after working with equation allow SC2 for $-3/8$ o.e. found with
			equation or wrong inequality
4 (ii)	$-4 < x < \frac{1}{2}$ o.e.	2	accept as two inequalities
			M1 for one 'end' correct or for -4 and $\frac{1}{2}$
5 (i)	$7\sqrt{3}$	2	M1 for $\sqrt{48} = 4\sqrt{3}$ or $\sqrt{27} = 3\sqrt{3}$

4	7	5	1
-		v	

PMT

/51		Sonem	5 Suite 201
5 (ii)	$\frac{10+15\sqrt{2}}{7}$ www isw	3	B1 for 7 [B0 for 7 wrongly obtained] <u>and</u> B2 for $10+15\sqrt{2}$ or B1 for one term of numerator correct; if B0 , then M1 for attempt to multiply num and denom by $3+\sqrt{2}$
6	5 + 2k soi $k = 12$	M1 A1	allow M1 for expansion with $5x^3 + 2kx^3$ and no other x^3 terms or M1 for $(29 - 5) / 2$ soi
	attempt at f(3) 27 + 36 + m = 59 o.e. m = -4 cao	M1 A1 A1	must substitute 3 for x in cubic not product or long division as far as obtaining x^2 + 3x in quotient or from division $m - (-63) = 59$ o.e. or for $27 + 3k + m = 59$ or ft their k
7	$\frac{1+2x+\frac{3}{2}x^{2}+\frac{1}{2}x^{3}+\frac{1}{16}x^{4} \text{ oe (must}}{\text{be simplified) isw}}$	4	B3 for 4 terms correct, or B2 for 3 terms correct or for all correct but unsimplified (may be at an earlier stage, but factorial or ⁿ C _r notation must be expanded/worked out) or B1 for 1, 4, 6, 4, 1 soi or for $1++\frac{1}{16}x^4$ [must have at least one other term]
8	$5(x+2)^2 - 14$	4	B1 for $a = 5$, and B1 for $b = 2$ and B2 for $c = -14$ or M1 for $c = 6 - $ their ab^2 or M1 for [their a](6/their a – their b^2) [no ft for $a = 1$]
9	mention of -5 as a square root of 25 or $(-5)^2 = 25$ $-5 -5 \neq 0$ o.e. or $x + 5 = 0$	M1 M1	condone $-5^2 = 25$ or, dep on first M1 being obtained, allow M1 for showing that 5 is the only soln of $x - 5 = 0$
			allow M2 for $x^2 - 25 = 0$ (x + 5)(x - 5) [= 0] so $x - 5 = 0$ or $x + 5 = 0$

Section A Total: 36

SECTION B

10	(i)	(2x-3)(x+1)	M2	M1 for factors with one sign error or giving two terms correct allow M1 for $2(x - 1.5)(x + 1)$ with no better factors seen
		x = 3/2 and -1 obtained	B 1	or ft their factors
10	(ii)	graph of quadratic the correct way up and crossing both axes	B1	
		crossing x-axis only at $3/2$ and -1 or ft from their roots in (i), or their factors if roots not given	B1	for $x = 3/2$ condone 1 and 2 marked on axis and crossing roughly halfway between; intns must be shown labelled or worked out nearby
		crossing <i>y</i> -axis at −3	B 1	
10	(iii)	use of $b^2 - 4ac$ with numbers subst (condone one error in substitution) (may be in quadratic formula)	M1	may be in formula or $(x - 2.5)^2 = 6.25 - 10$ or $(x - 2.5)^2 + 3.75 = 0$ oe (condone one error)
		25 – 40 < 0 or –15 obtained	A1	or $\sqrt{-15}$ seen in formula or $(x - 2.5)^2 = -3.75$ oe or $x = 2.5 \pm \sqrt{-3.75}$ oe
10	(iv)	$2x^2 - x - 3 = x^2 - 5x + 10 \text{ o.e.}$	M1	attempt at eliminating y by subst or subtraction
		$x^2 + 4x - 13 = 0$	M1	or $(x + 2)^2 = 17$; for rearranging to form $ax^2 + bx + c$ [= 0] or to completing square form condone one error for each of 2 nd and 3 rd M1s
		use of quad. formula on resulting eqn (do not allow for original quadratics used)	M1	or $x+2=\pm\sqrt{17}$ o.e. 2nd and 3rd M1s may be earned for good attempt at completing square as far as roots obtained
		$-2\pm\sqrt{17}$ cao	A1	

|--|

June 2010

11	(i)	grad AB = $\frac{1-3}{5-(-1)}$ [= -1/3]	M1	
		y-3 = their grad $(x - (-1))$ or y-1 = their grad $(x - 5)$	M1	or use of $y =$ their gradient $x + c$ with coords of A or B
				or M2 for $\frac{y-3}{1-3} = \frac{x-(-1)}{5-(-1)}$ o.e.
		y = -1/3x + 8/3 or $3y = -x + 8$ o.e isw	A1	o.e. eg $x + 3y - 8 = 0$ or $6y = 16 - 2x$ allow B3 for correct eqn www
11	(ii)	when $y = 0$, $x = 8$; when $x = 0$, y = 8/3 or ft their (i)	M1	allow y = 8/3 used without explanation if already seen in eqn in (i)
		$[Area =] \frac{1}{2} \times \frac{8}{3} \times 8 \text{ o.e. cao isw}$	M1	NB answer 32/3 given; allow 4 × 8/3 if first M1 earned; or M1 for $\int_{0}^{8} \left[\frac{1}{3} (8-x) \right] dx = \left[\frac{1}{3} \left(8x - \frac{1}{2}x^{2} \right) \right]_{0}^{8}$ and M1 dep for $\frac{1}{3} \left(64 - 32 [-0] \right)$
11	(iii)	grad perp = $-1/\text{grad}$ AB stated, or used after their grad AB stated in this part	M1	or showing $3 \times -1/3 = -1$ if (i) is wrong, allow the first M1 here ft, provided the answer is correct ft
		midpoint [of AB] = $(2, 2)$	M1	must state 'midpoint' or show working
		y - 2 = their grad perp ($x - 2$) or ft their midpoint	M1	for M3 this must be correct, starting from grad $AB = -1/3$, and also needs correct completion to given ans $y = 3x - 4$
		alt method working back from ans:	or	mark one method or the other, to benefit of candidate, not a mixture
		grad perp = $-1/\text{grad AB}$ and showing/stating same as given line	M1	eg stating $-1/3 \times 3 = -1$
		finding intn of their y = -1/3x - 8/3 and $y = 3x - 4$ is (2, 2)	M1	or showing that (2, 2) is on $y = 3x - 4$, having found (2, 2) first
		showing midpt of AB is (2, 2)	M1	[for both methods: for M3 must be fully correct]

PMT

4751		Mark Se	cheme	June 2010
11	(iv)	subst $x = 3$ into $y = 3x - 4$ and obtaining centre = (3, 5)	M1	or using $(-1-3)^2 + (3-b)^2 = (5-3)^2 + (1-b)^2$ and finding (3, 5)
		$r^2 = (5-3)^2 + (1-5)^2$ o.e.	M1	or $(-1-3)^2 + (3-5)^2$ or ft their
		$r = \sqrt{20}$ o.e. cao	A1	centre using A of B
		eqn is $(x-3)^2 + (y-5)^2 = 20$ or ft their <i>r</i> and <i>y</i> -coord of centre	B1	condone $(x - 3)^2 + (y - b)^2 = r^2$ o.e. or $(x - 3)^2 + (y - \text{their 5})^2 = r^2$ o.e. (may be seen earlier)
12	(i)	trials of at calculating $f(x)$ for at least one factor of 30	M1	M0 for division or inspection used
		details of calculation for $f(2)$ or $f(-3)$ or $f(-5)$	A1	
		attempt at division by $(x - 2)$ as far as $x^3 - 2x^2$ in working	M1	or equiv for $(x + 3)$ or $(x + 5)$; or inspection with at least two terms of quadratic factor correct
		correctly obtaining $x^2 + 8x + 15$	A1	or B2 for another factor found by factor theorem
		factorising a correct quadratic factor	M1	for factors giving two terms of quadratic correct; M0 for formula without factors found
		(x-2)(x+3)(x+5)	A1	condone omission of first factor found; ignore '= 0' seen
				allow last four marks for $(x-2)(x+3)(x+5)$ obtained; for all 6 marks must see factor theorem use first
12	(ii)	sketch of cubic right way up, with two turning points	B1	0 if stops at <i>x</i> -axis
		values of intns on x axis shown, correct $(-5, -3, \text{ and } 2)$ or ft from	B 1	on graph or nearby in this part
		their factors/ roots in (i)		mark intent for intersections with both axes
		y-axis intersection at −30	B1	or $x = 0$, $y = -30$ seen in this part if consistent with graph drawn

PMT

1751		Mark S	cheme	June 201
12	(iii)	(x - 1) substituted for <i>x</i> in either form of eqn for $y = f(x)$	M1	correct or ft their (i) or (ii) for factorised form; condone one error; allow for new roots stated as $-4,-2$ and 3 or ft
		$(x-1)^3$ expanded correctly (need not be simplified) or two of their factors multiplied correctly	M1 dep	or M1 for correct or correct ft multiplying out of all 3 brackets at once, condoning one error $[x^3 - 3x^2$ $+ 4x^2 + 2x^2 + 8x - 6x - 12x - 24]$
		correct completion to given answer [condone omission of 'y =']	M1	unless all 3 brackets already expanded, must show at least one further interim step allow SC1 for $(x + 1)$ subst <u>and</u> correct exp of $(x + 1)^3$ or two of their factors ft
				<u>or</u> , for those using given answer: M1 for roots stated or used as -4,-2 and 3 or ft A1 for showing all 3 roots satisfy given eqn B1 for comment re coefft of x^3 or product of roots to show that eqn of translated graph is not a multiple of RHS of given eqn

Section B Total: 36