GCE

Mathematics (MEI)

Advanced Subsidiary GCE
Unit 4751: Introduction to Advanced Mathematics

Mark Scheme for June 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2011
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

1	$x>-13 / 4$ o.e. isw Www	3	condone $x>13 /-4$ or $13 /-4<x$; M2 for $4 x>-13$ or $\mathbf{M 1}$ for one side of this correct with correct inequality, and B1 for final step ft from their $a x>b$ or $c>d x$ for $a \neq 1$ and $d \neq 1$; if no working shown, allow SC1 for $-13 / 4$ oe with equals sign or wrong inequality	M1 for $13>-4 x$ (may be followed by $13 /-4>x$, which earns no further credit); $6 x+3>2 x+5$ is an error not an MR; can get M1 for $4 x>\ldots$ following this, and then a possible B1
2	7	2	condone $y=7$ or (5, 7); M1 for $\frac{k-(-5)}{5-1}=3$ or other correct use of gradient eg triangle with 4 across, 12 up	condone omission of brackets; or M1 for correct method for eqn of line and $x=5$ subst in their eqn and evaluated to find k; or M1 for both of $y-k=3(x-5)$ oe and $y-(-5)=3(x-1)$ oe
3	(i) $4 / 3$ isw	2	condone $\pm 4 / 3$; M1 for numerator or denominator correct or for $\frac{3}{4}$ or $\frac{1}{\left(\frac{3}{4}\right)}$ oe or for $\left(\frac{16}{9}\right)^{\frac{1}{2}} \text { soi }$	M1 for just -4/3; allow M1 for $\sqrt{16}=4$ and $\sqrt{9}=3$ soi; condone missing brackets

3	(ii) $\frac{2 a}{c^{5}}$ or $2 a c^{-5}$	3	B1 for each 'term' correct; mark final answer; if B0, then SC1 for $\left(2 a c^{2}\right)^{3}=8 a^{3} c^{6}$ or $72 a^{5} c^{7}$ seen	condone a^{1}; condone multiplication signs but $\mathbf{0}$ for addition signs
4	(i) (10, 4)	2	$\mathbf{0}$ for (5, 4); otherwise $\mathbf{1}$ for each coordinate	ignore accompanying working / description of transformation; condone omission of brackets; (Image includes back page for examiners to check that there is no work there)
4	(ii) $(5,11)$	2	$\mathbf{0}$ for (5, 4); otherwise $\mathbf{1}$ for each coordinate	ignore accompanying working / description of transformation; condone omission of brackets
5	6000	4	M3 for $15 \times 5^{2} \times 2^{4}$; or M2 for two of these elements correct with multiplication or all three elements correct but without multiplication (e.g. in list or with addition signs); or M1 for 15 soi or for $1615 \ldots$ seen in Pascal's triangle; SC2 for $20000\left[X^{3}\right]$	condone inclusion of x^{4} eg $(2 x)^{4}$; condone omission of brackets in $2 x^{4}$ if 16 used; allow M3 for correct term seen (often all terms written down) but then wrong term evaluated or all evaluated and correct term not identified; $15 \times 5^{2} \times(2 x)^{4}$ earns M3 even if followed by $15 \times 25 \times$ 2 calculated; no MR for wrong power evaluated but SC for fourth term evaluated

6	$2 x^{3}+9 x^{2}+4 x-15$	3	as final answer; ignore ' $=0$ '; B2 for 3 correct terms of answer seen or for an 8 -term or 6 term expansion with at most one error: or M1 for correct quadratic expansion of one pair of brackets; or SC1 for a quadratic expansion with one error then a good attempt to multiply by the remaining bracket	correct 8-term expansion: $2 x^{3}+6 x^{2}-2 x^{2}+5 x^{2}-6 x+15 x-5 x-15$ correct 6-term expansions: $\begin{aligned} & 2 x^{3}+4 x^{2}+5 x^{2}-6 x+10 x-15 \\ & 2 x^{3}+6 x^{2}+3 x^{2}+9 x-5 x-15 \\ & 2 x^{3}+11 x^{2}-2 x^{2}+15 x-11 x-15 \end{aligned}$ for M1, need not be simplified; ie SC1 for knowing what to do and making a reasonable attempt, even if an error at an early stage means more marks not available
7	$b^{2}-4 a c \text { soi }$ 1 www 2 [distinct real roots]	M1 A1 B1	or B2 B0 for finding the roots but not saying how many there are	allow seen in formula; need not have numbers substituted but discriminant part must be correct; clearly found as discriminant, or stated as $b^{2}-4 a c$, not just seen in formula eg M1A0 for $\sqrt{b^{2}-4 a c}=\sqrt{1}=1$; condone discriminant not used; ignore incorrect roots found

8
$y x+2 x=1-3 y$ oe or ft
$x(y+2)=1-3 y$ oe or ft
$\left[\begin{array}{l}x=] \frac{1-3 y}{y+2} \text { oe or } \mathrm{ft} \text { as final answer }\end{array}\right.$

M1
for multiplying to eliminate denominator and for expanding brackets,
or for correct division by y and writing as separate fractions: $x+3=\frac{1}{y}-\frac{2 x}{y}$;
for collecting terms; dep on having an $a x$ term and an $x y$ term, oe after division by y,
for taking out x factor; dep on having an $a x$ term and an $x y$ term, oe after division by y,

M1
for division with no wrong work after; dep on dividing by a two-term expression; last M not earned for tripledecker fraction as final answer
each mark is for carrying out the operation correctly; ft earlier errors for equivalent steps if error does not simplify problem;
some common errors:

$y(x+3)=1-2 x$	$y x+3=1-2 x \quad$ M0
$y x+3 x=1-2 x \quad$ M0	$y x+2 x=-2 \quad$ M1 ft
$y x+5 x=1 \quad \mathbf{M 1 ~ f t}$	
$x(y+5)=1 \quad \mathbf{M 1 ~ f t}$	$x(y+2)=-2 \quad \mathbf{M 1 ~ f t}$
$x=\frac{1}{y+5} \quad \mathbf{~ M 1 ~ f t ~}$	$x=\frac{-2}{y+2} \quad$ M1 ft

for M4, must be completely correct;

9	$\begin{array}{l}x+2 y=k(k \neq 6) \text { or } \\ y=-1 / 2 x+c(c \neq 3)\end{array}$

$x+2 y=12$ or $[y=]-1 / 2 x+6$ oe
$(12,0)$ or ft
(0, 6)or ft

36 [sq units] cao
attempt to use gradients of parallel lines the same; M0 if just given line used;
or B2; must be simplified; or evidence of correct 'stepping' using $(10,1)$ eg may be on diagram;
or 'when $y=0, x=12$ ' etc or using 12 or ft as a limit of integration;
intersections must ft from their line or 'stepping’ diagram using their gradient or_integrating to give $-1 / 4 x^{2}+6 x$ or ft their line or B3 www
eg following an error in manipulation, getting original line as $y=1 / 2 x+3$ then using $y=1 / 2 x+c$ earns M1 and can then go on to get A0 for $y=1 / 2 x-4$, M1 for (0 , -4) M1 for $(8,0)$ and $\mathbf{A 0}$ for area of 16 ;
allow bod $\mathbf{B 2}$ for a candidate who goes straight to $y=-1 / 2 x+6$ from $2 y=-x+6$;

NB the equation of the line is not required; correct intercepts obtained will imply this A1;

NB for intersections with axes, if both Ms are not gained, it must be clear which coord is being found eg M0 for intn with x axis $=6$ from correct eqn;; if the intersections are not explicit, they may be implied by the area calculation eg use of $h t=6$ or the correct ft area found;
allow ft from the given line as well as others for both these intersection Ms;

NB A0 if 36 is incorrectly obtained eg after intersection $x=-12$ seen (which earns M0 from correct line);

10	$n(n+1)(n+2)$	M1	condone division by n and then $(n+1)(n+2)$ seen, or separate factors shown after factor theorem used;	ignore ' $=0$ ';
argument from general consecutive numbers leading to:		At least one must be even [exactly] one must be multiple of 3 an induction approach using the factors may also be used eg by those doing paper FP1 as well;		
or divisible by 2;	A1	A0 for just substituting numbers for n and stating results;		
if M0: allow SC1 for showing given expression always even	allow SC2 for a correct induction approach using the original cubic (SC1 for each of showing even and showing divisible by 3)			

SECTION B

11	$\begin{aligned} & \text { (i) } x+4 x^{2}+24 x+31=10 \text { oe } \\ & 4 x^{2}+25 x+21[=0] \\ & (4 x+21)(x+1) \end{aligned}$ $x=-1$ or $-21 / 4$ oe isw $y=11$ or $61 / 4$ oe isw	M1 M1 M1 A1 A1	for subst of x or y or subtraction to eliminate variable; condone one error; for collection of terms and rearrangement to zero; condone one error; for factors giving at least two terms of their quadratic correct or for subst into formula with no more than two errors [dependent on attempt to rearrange to zero]; or A1 for $(-1,11)$ and $\mathbf{A 1}$ for ($-21 / 4$, 61/4) oe	or $4 y^{2}-105 y+671[=0]$; eg condone spurious $y=4 x^{2}+25 x+21$ as one error (and then count as eligible for $3^{\text {rd }} \mathbf{M 1}$); or $(y-11)(4 y-61)$; [for full use of completing square with no more than two errors allow 2nd and 3rd M1s simultaneously]; from formula: accept $x=-1$ or $-42 / 8$ oe isw
11	(ii) $4(x+3)^{2}-5$ isw	4	B1 for $a=4$, B1 for $b=3$, B2 for $c=-5$ or M1 for $31-4 \times$ their b^{2} soi or for $-5 / 4$ or for $31 / 4$ - their b^{2} soi	eg an answer of $(x+3)^{2}-5 / 4$ earns B0 B1 M1; $1(2 x+6)^{2}-5$ earns B0 B0 B2; 4(earns first B1; condone omission of square symbol
11	(iii)(A) $x=-3$ or ft (-their b) from (ii)	1		$\mathbf{0}$ for just -3 or ft; 0 for $x=-3, y=-5$ or ft
11	(iii)(B) -5 or ft their c from (ii)	1	allow $y=-5$ or ft	0 for just ($-3,-5$); bod 1 for $x=-3$ stated then $y=-5$ or ft

\begin{tabular}{|c|c|c|c|c|}
\hline 12 \& (i) \(y=2 x+5\) drawn
\[
-2,-1.4 \text { to }-1.2,0.7 \text { to } 0.85
\] \& M1
A2 \& A1 for two of these correct \& \begin{tabular}{l}
condone unruled and some doubling; tolerance: must pass within/touch at least two circles on overlay; the line must be drawn long enough to intersect curve at least twice; \\
condone coordinates or factors
\end{tabular} \\
\hline \multirow[t]{5}{*}{12} \& (ii) \(4=2 x^{3}+5 x^{2}\) or \(2 x+5-\frac{4}{x^{2}}=0\) and completion to given answer
\[
f(-2)=-16+20-4=0
\] \& B1

B1 \& or correct division / inspection showing that $x+2$ is factor; \& condone omission of final ' $=0$ ';

\hline \& use of $x+2$ as factor in long division of given cubic as far as $2 x^{3}+4 x^{2}$ in working \& M1 \& or inspection or equating coefficients, with at least two terms correct; \& may be set out in grid format

\hline \& $2 x^{2}+x-2$ obtained \& A1 \& \& condone omission of + sign (eg in grid format)

\hline \& \[
[x=] \frac{-1 \pm \sqrt{1^{2}-4 \times 2 \times-2}}{2 \times 2} oe

\] \& M1 \& dep on previous M1 earned; for attempt at formula or full attempt at completing square, using their other factor \& | not more than two errors in formula / substitution / completing square; allow even if their 'factor' has a remainder shown in working; |
| :--- |
| M0 for just an attempt to factorise |

\hline \& $\frac{-1 \pm \sqrt{17}}{4}$ oe isw \& A1 \& \&

\hline
\end{tabular}

| 12 | (iii) $\frac{4}{x^{2}}=x+2$ or $y=x+2$ soi | M1 | eg is earned by correct line drawn |
| :--- | :--- | :--- | :--- | :--- |
| $y=x+2$ drawn | A1 | | condone intent for line; allow slightly out of tolerance; |
| 1 real root | A1 | | condone unruled; need drawn for $-1.5 \leq x \leq 1.2$; to
 pass through/touch relevant circle(s) on overlay |
| 13 | (i) [radius $=$] 4
 [centre] $(4,2)$ | B1 | B0 for ± 4 |
| B1 | | condone omission of brackets | |

13	(ii) $(x-4)^{2}+(-2)^{2}=16$ oe	M1	for subst $y=0$ in circle eqn;	NB candidates may expand and rearrange eqn first, making errors - they can still earn this M1 when they subst $y=0$ in their circle eqn; condone omission of $(-2)^{2}$ for this first M1 only; not for second and third M1s; do not allow substitution of $x=0$ for any Ms in this part
	$(x-4)^{2}=12 \text { or } x^{2}-8 x+4[=0]$	M1	putting in form ready to solve by comp sq , or for rearrangement to zero; condone one error;	eg allow M1 for $x^{2}+4=0$ [but this two-term quadratic is not eligible for $3^{\text {rd }} \mathbf{M 1}$];
	$\begin{aligned} & x-4= \pm \sqrt{12} \text { or } \\ & {[x=] \frac{8 \pm \sqrt{8^{2}-4 \times 1 \times 4}}{2 \times 1}} \end{aligned}$	M1	for attempt at comp square or formula; dep on previous M2 earned and on three-term quadratic;	not more than two errors in formula / substitution; allow M1 for $x-4=\sqrt{12}$; M0 for just an attempt to factorise
	$[x=] 4 \pm \sqrt{12}$ or $4 \pm 2 \sqrt{3}$ or $\frac{8 \pm \sqrt{48}}{2}$ oe isw	A1		
		or		
	sketch showing centre $(4,2)$ and triangle with hyp 4 and ht 2	M1		
	$4^{2}-2^{2}=12$	M1	or the square root of this; implies previous M1 if no sketch seen;	
	$[x=] 4 \pm \sqrt{12}$ oe	A2	A1 for one solution	

(iii) subst $(4+2 \sqrt{2}, 2+2 \sqrt{2})$ into circle eqn and showing at least one step in correct completion

Sketch of both tangents
grad $\operatorname{tgt}=-1$ or $-1 /$ their grad CA
$y-(2+2 \sqrt{2})=$ their $m(x-(4+2 \sqrt{2}))$
$y=-x+6+4 \sqrt{2}$ oe isw
parallel tgt goes through
$(4-2 \sqrt{2}, 2-2 \sqrt{2})$
eqn is $y=-x+6-4 \sqrt{2}$ oe isw

B1
or showing sketch of centre C and A and using Pythag:
$(2 \sqrt{2})^{2}+(2 \sqrt{2})^{2}=8+8=16 ;$

M1

M1
allow ft after correct method seen for $\operatorname{grad} C A=\frac{2+2 \sqrt{2}-2}{4+2 \sqrt{2}-4}$ oe (may be on/ near sketch);
or $y=$ their $m x+c$ and subst of $(4+2 \sqrt{2}, 2+2 \sqrt{2})$;
accept simplified equivs eg
$x+y=6+4 \sqrt{2}$;
M1
or ft wrong centre; may be shown on diagram; may be implied by correct equation for the tangent (allow ft their gradient);

A1
accept simplified equivs eg
$x+y=6-4 \sqrt{2}$
or subst the value for one coord in circle eqn and correctly working out the other as a possible value;
need not be ruled;
must have negative gradients with tangents intended to be parallel and one touching above and to right of centre; mark intent to touch - allow just missing or just crossing circle twice; condone A not labelled
allow ft from wrong centre found in (i);
for intent; condone lack of brackets for $\mathbf{M 1}$;
independent of previous Ms; condone grad of CA used;

A0 if obtained as eqn of other tangent instead of the tangent at A (eg after omission of brackets);
no bod for just $y-2-2 \sqrt{2}=-1(x-4-2 \sqrt{2})$ without first seeing correct coordinates;
$\mathbf{A 0}$ if this is given as eqn of the tangent at A instead of other tangent (eg after omission of brackets)

Section B Total: 36

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

