Mark Scheme 4752 January 2007

Section A

1	$\frac{5}{2} \times 6 x^{\frac{3}{2}}$	1+1	- 1 if extra term	2
2	-0.2	3	M1 for $5=\frac{6}{1-r}$ and M1 dep for correct constructive step	3
3	$\sqrt{8}$ or $2 \sqrt{2}$ not $\pm \sqrt{ } 8$	3	M1 for use of $\sin ^{2} \theta+(1 / 3)^{2}=1$ and M1for $\sin \theta=\sqrt{8} / 3$ (ignore \pm) Diag.: hypot $=3$, one side $=1$ M1 3rd side $\sqrt{ } 8 \mathrm{M} 1$	3
4	(i) C (ii) B (iii) 2^{n-1}	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$		3
5	(i) $-0.93,-0.930,-0.9297 \ldots$ (ii) answer strictly between 1.91 and 2 or 2 and 2.1 (iii) $y^{\prime}=-8 / x^{3}$, gradient $=-1$	2 B1 M1A1	M1 for grad = (1 - their $\left.y_{\mathrm{B}}\right) /(2-2.1)$ if M0, SC1 for 0.93 don't allow 1.9 recurring	5
6	At least one cycle from $(0,0)$ amplitude 1 and period $360\left[{ }^{\circ}\right]$ indicated $222.8 \text { to } 223 \text { and } 317 \text { to } 317.2\left[^{\circ}\right]$	G1 G1dep 2	1 each, ignore extras	4
7	$x<0$ and $x>6$	3	B2 for one of these or for 0 and 6 identified or M 1 for $\mathrm{x}^{2}-6 \mathrm{x}>0$ seen (M1 if y found correctly and sketch drawn)	3
8	$a+6 d=6 \text { correct }$ $30=\frac{10}{2}(2 a+9 d)$ correct o.e. elimination using their equations $a=-6 \text { and } d=2$ 5th term $=2$	M1 M1 M1f.t. A1 A1	Two equations in a and d	5
9	$(y=) 2 x^{3}+4 x^{2}-1$ accept $2 x^{3}+4 x^{2}+c$ and $c=-1$	4	M2 for $(y=) 2 x^{3}+4 x^{2}+c$ (M1 if one error) and M1 for subst of $(1,5)$ dep on their $\mathrm{y}=,+\mathrm{c}$, integration attempt.	4
10	(i) $3 \log _{2} X$ ii) $b=\frac{1000}{c}$	2 2	M1 for $4 \log _{2} x$ or $-\log _{2} x$; or $\log x^{3}$ M1 for 1000 or 10^{3} seen	4

\begin{tabular}{|c|c|c|c|c|c|}
\hline 11 \& i
ii
iiiA
iiiB \& \begin{tabular}{l}
Correct attempt at cos rule correct full method for C
\[
C=141.1 \ldots
\] \\
bearing \(=[0] 38.8\) cao \\
\(1 / 2 \times 118 \times 82 \times\) sin their C or supp. \\
3030 to \(3050\left[\mathrm{~m}^{2}\right]\)
\[
\sin (\theta / 2)=(1 / 2 \times 189) / 130
\]
\[
1.6276 \rightarrow 1.63
\]
\[
\begin{aligned}
\& 0.5 \times 130^{2} \times \sin 1.63 \\
\& 0.5 \times 130^{2} \times 1.63
\end{aligned}
\] \\
their sector - their triangle AOB
\[
5315 \text { to } 5340
\]
\end{tabular} \& \begin{tabular}{l}
M1 \\
M1 \\
A1 \\
A1 \\
M1 \\
A1 \\
M1 \\
A1 \\
M1 \\
M1 \\
M1 \\
A1
\end{tabular} \& \begin{tabular}{l}
any vertex, any letter \\
or B4 \\
or correct use of angle A or angle B
\[
\begin{aligned}
\& \text { or } \cos \theta=\left(130^{2}+130^{2}-\right. \\
\& \left.189^{2}\right) /(2 \times 130 \times 130)
\end{aligned}
\] \\
In all methods, the more accurate number to be seen. condone their \(\theta\) (8435) condone their \(\theta\) in radians (13770) dep on sector \(>\) triangle
\end{tabular} \& 4
2
2 \\
\hline 12 \& ii
iii \& \begin{tabular}{l}
\[
\begin{aligned}
\& (2 x-3)(x-4) \\
\& x=4 \text { or } 1.5
\end{aligned}
\]
\[
y^{\prime}=4 x-11
\] \\
\(=5\) when \(x=4\) c.a.o. grad of normal \(=-1\) /their \(y^{\prime}\) \(y[-0]=\) their \(-0.2(x-4)\) \\
y -intercept for their normal area \(=1 / 2 \times 4 \times 0.8\) c.a.o.
\[
\frac{2}{3} x^{3}-\frac{11}{2} x^{2}+12 x
\] \\
attempt difference between value at 4 and value at 1.5
\[
[-] 5 \frac{5}{24} \text { o.e. or [-]5.2(083..) }
\]
\end{tabular} \& \begin{tabular}{l}
M1 A1A1 \\
M1 \\
A1 \\
M1f.t. \\
M1 \\
B1f.t. \\
A1 \\
M1 \\
M1 \\
A1
\end{tabular} \& \begin{tabular}{l}
or \((11 \pm \sqrt{ }(121-96)) / 4\) \\
if M0, then B1 for showing \(y=0\) \\
when \(x=4\) and B 2 for \(\mathrm{x}=1.5\) \\
condone one error \\
or \(0=\) their \((-0.2) \times 4+c\) dep on normal attempt \\
s.o.i. normal must be linear or integrating their \(\mathrm{f}(\mathrm{x})\) from 0 to 4 M 1 \\
condone one error, ignore +c ft their (i), dep on integration attempt. c.a.o.
\end{tabular} \& 3

6 \\
\hline 13 \& ii
iii
iv

v \& \begin{tabular}{l}
$$
\begin{aligned}
& \log _{10} y=\log _{10} k+\log _{10} 10^{a x} \\
& \log _{10} y=a x+\log _{10} k \text { compared }
\end{aligned}
$$
$$
\text { to } y=m x+c
$$ \\
2.9(0), 3.08, 3.28, 3.48, 3.68 \\
plots [tol 1 mm] \\
ruled line of best fit drawn \\
intercept $=2.5$ approx \\
gradient $=0.2$ approx \\
$\mathrm{y}=$ their $300 \times 10^{\text {x(their } 0.2)}$ \\
or $y=10^{\text {(their } 2.5+\text { their } 0.2 x)}$ \\
subst 75000 in any x / y eqn \\
subst in a correct form of the \\
relationship \\
11,12 or 13 \\
"Profits change" or any reason for this.

 \&

M1 \\
M1 \\
T1 \\
P1f.t \\
L1f.t. \\
M1 \\
M1 \\
M1f.t. \\
M1 \\
M1 \\
A1 \\
R1

 \&

condone one error \\
or $\mathrm{y}-2.7=\mathrm{m}(\mathrm{x}-1)$ \\
B3 with evidence of valid working too big, too soon
\end{tabular} \& 2

3
3
3
3
3
1 \\
\hline
\end{tabular}

