4752 (C2) Concepts for Advanced Mathematics

Section A

1	$40 x^{3}$	2	-1 if extra term	2
2	(i) 3 (ii) 141	1 2	M1 for $9 \times(1+2+3+4+5)+1+2+3$	3
3	right angled triangle with 1 and 2 on correct sides Pythagoras used to obtain hyp $=\sqrt{ } 5$ $\cos \theta=\frac{a}{h}=\frac{2}{\sqrt{5}}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	or M1 for $\sin \theta=1 / 2 \cos \theta$ and M1 for substituting in $\sin ^{2} \theta+\cos ^{2} \theta=1$ E1 for sufficient working	3
4	(i)line along $y=6$ with V (1, 6), (2, 2), (3, 6) (ii) line along $y=3$ with V $(-2,3),(-1,1),(0,3)$	2 2	1 for two points correct 1 for two points correct	4
5	$2 x^{6}+\frac{3}{4} x^{\frac{4}{3}}+7 x+c$	5	1 for $2 x^{6} ; 2$ for $\frac{3}{4} x^{\frac{4}{3}}$ or 1 for other $k x^{\frac{4}{3}} ; 1$ for $7 x$; 1 for $+c$	5
6	(i) correct sine shape through O amplitude of 1 and period 2π shown (ii) $7 \pi / 6$ and $11 \pi / 6$	$\begin{aligned} & 1 \\ & 1 \\ & 3 \end{aligned}$	B2 for one of these; 1 for $-\pi / 6$ found	5
7	(i) 60 (ii) -6 (iii)	2 1 $\begin{aligned} & 1 \\ & 1 \end{aligned}$	M1 for $2^{2}+2^{3}+2^{4}+2^{5}$ o.e. Correct in both quadrants Through $(0,1)$ shown dep.	5
8	$\begin{aligned} & r=1 / 3 \text { s.o.i. } \\ & a=54 \text { or ft } 18 \div \text { their } r \\ & \mathrm{~S}=\frac{a}{1-r} \text { used with }-1<\mathrm{r}<1 \\ & \mathrm{~S}=81 \text { c.a.o. } \end{aligned}$	$\begin{aligned} & 2 \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	1 mark for ar $=18$ and $\mathrm{ar}^{3}=2$ s.o.i.	5
9	(i) 0.23 c.a.o. (ii) 0.1 or $1 / 10$ (iii) $4(3 x+2)$ or $12 x+8$ (iv) $[y=] 10^{3 x+2}$ o.e.	1 1 1 1	10^{-1} not sufficient	4

Section B

\begin{tabular}{|c|c|c|c|c|c|}
\hline 10 \& i
ii
iii \& \begin{tabular}{l}
\[
\begin{aligned}
\& h=120 / x^{2} \\
\& A=2 x^{2}+4 x h \text { o.e. }
\end{aligned}
\] \\
completion to given answer
\[
\begin{aligned}
\& A^{\prime}=4 x-480 / x^{2} \text { o.e. } \\
\& A^{\prime \prime}=4+960 / x^{3}
\end{aligned}
\] \\
use of \(A^{\prime}=0\)
\[
x=\sqrt[3]{120} \text { or } 4.9(3 . .)
\] \\
Test using \(A^{\prime}\) or \(A^{\prime \prime}\) to confirm minimum \\
Substitution of their \(x\) in \(A\)
\[
A=145.9 \text { to } 146
\]
\end{tabular} \& \begin{tabular}{l}
B1 \\
M1 \\
A1 \\
2 \\
2 \\
M1 \\
A1 \\
T1 \\
M1 \\
A1
\end{tabular} \& \begin{tabular}{l}
at least one interim step shown \\
1 for \(k x^{-2}\) o.e. included ft their \(A^{\prime}\) only if \(k x^{-2}\) seen ; 1 if one error \\
Dependent on previous M1
\end{tabular} \& 3
4
4
5 \\
\hline 11 \& iA

iB

ii \& \[
$$
\begin{aligned}
& \mathrm{BC}^{2}=348^{2}+302^{2}-2 \times 348 \times \\
& 302 \times \cos 72^{\circ} \\
& \mathrm{BC}=383.86 \ldots \\
& 1033.86 \ldots[\mathrm{~m}] \text { or } \mathrm{ft} 650+\text { their } \mathrm{BC} \\
& \\
& \frac{\sin B}{302}=\frac{\sin 72}{\text { their } B C} \\
& \mathrm{~B}=48.4 . . \\
& 355-\text { their } \mathrm{B} \text { o.e. } \\
& \text { answer in range } 306 \text { to } 307 \\
& \\
& \text { Arc length } \mathrm{PQ}=\frac{224}{360} \times 2 \pi \times 120 \\
& \text { o.e. or } 469.1 \ldots \text { to } 3 \text { sf or more } \\
& \mathrm{QP}=222.5 \ldots \text { to } 3 \mathrm{sf} \text { or more } \\
& \text { answer in range } 690 \text { to } 692[\mathrm{~m}]
\end{aligned}
$$

\] \& | M2 |
| :--- |
| A1 |
| 1 |
| M1 |
| A1 |
| M1 |
| A1 |
| M2 |
| B1 |
| A1 | \& | M1 for recognisable attempt at Cosine Rule to 3 sf or more accept to 3 sf or more |
| :--- |
| Cosine Rule acceptable or Sine Rule to find C or $247+$ their C |
| M1 for $\frac{136}{360} \times 2 \pi \times 120$ | \& 4

4
4

4

\hline 12 \& iA iB \& \[
$$
\begin{aligned}
& x^{4}=8 x \\
& (2,16) \text { c.a.o. } \\
& \mathrm{PQ}=16 \text { and completion to show } \\
& 1 / 2 \times 2 \times 16=16 \\
& \\
& x^{5} / 5 \\
& \text { evaluating their integral at their } \\
& \text { co-ord of } \mathrm{P} \text { and zero [or } 32 / 5 \text { o.e.] } \\
& 9.6 \text { o.e. }
\end{aligned}
$$

\] \& | M1 |
| :--- |
| A1 |
| A1 |
| M1 |
| M1 |
| A1 | \& | NB answer 16 given |
| :--- |
| ft only if integral attempted, not for x^{4} or differentiation |
| c.a.o. | \& 3

3

\hline \& | iiA |
| :--- |
| iiB |
| iic |
| iiD | \& \[

$$
\begin{aligned}
& 6 x^{2} h^{2}+4 x h^{3}+h^{4} \\
& 4 x^{3}+6 x^{2} h+4 x h^{2}+h^{3} \\
& 4 x^{3} \\
& \text { gradient of [tangent to] curve }
\end{aligned}
$$

\] \& | 2 |
| :--- |
| 2 |
| 1 |
| 1 | \& | B1 for two terms correct. |
| :--- |
| B1 for three terms correct | \& 2

2
1
1

\hline
\end{tabular}

