4752 (C2) Concepts for Advanced Mathematics

Section A

1	$\begin{aligned} & 4 x^{5} \\ & -12 x^{-\frac{1}{2}} \\ & +c \end{aligned}$	$\begin{array}{\|l\|} \hline 1 \\ 2 \\ 1 \end{array}$	M1 for other $k x^{-\frac{1}{2}}$	4
2	95.25, 95.3 or 95	4	$\begin{aligned} & \text { M3 } \\ & 1 / 2 \times 5 \times(4.3+0+2[4.9+4.6+3.9+2.3+1.2]) \end{aligned}$ M2 with 1 error, M1 with 2 errors. Or M3 for 6 correct trapezia.	4
3	1.45 o.e.	2	M1 for $\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}$ oe	2
4	105 and 165	3	B1 for one of these or M1 for $2 x=210$ or 330	3
5	(i) graph along $y=2$ with V at $(3,2)(4,1) \&(5,2)$ (ii) graph along $y=6$ with V at $(1,6)(2,3) \&(3,6)$	2 2	M1 for correct V , or for $\mathrm{f}(\mathrm{x}+2)$ B1 for (2,k) with all other elements correct	4
6	(i) 54.5 (ii) Correct use of sum of AP formula with $n=50,20,19$ or 21 with their d and $a=7$ eg $\mathrm{S}_{50}=$ $3412.5, \mathrm{~S}_{20}=615$ Their $S_{50}-S_{20}$ dep on use of ap formula 2797.5 c.a.o.	2 M1 M1 A1	B1 for $d=2.5$ or M2 for correct formula for S_{30} with their d M1 if one slip	5
7	$8 x-x^{-2}$ o.e. their $\frac{d y}{d x}=0$ correct step $x=1 / 2$ c.a.o.	$\begin{array}{\|l} \hline 2 \\ \text { M1 } \\ \text { DM1 } \\ \text { A1 } \end{array}$	B1 each term s.o.i. s.o.i.	5
8	(i) 48 geometric, or GP (ii) mention of $\|r\|<1$ condition o.e. $S=128$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 2 \end{aligned}$	$\text { M1 for } \frac{192}{1--\frac{1}{2}}$	5
9	(i) 1 (ii) (A) $3.5 \log _{a} x$ (ii) (B) $-\log _{a} x$	1 2 1	M1 for correct use of $1^{\text {st }}$ or $3^{\text {rd }}$ law	4

Section B

\begin{tabular}{|c|c|c|c|c|c|}
\hline 10 \& i

ii

iii \& \begin{tabular}{l}
$$
\begin{aligned}
& 7-2 x \\
& x=2, \text { gradient }=3 \\
& x=2, y=4 \\
& y-\text { their } 4=\text { their } \operatorname{grad}(x-2)
\end{aligned}
$$

subst $y=0$ in their linear eqn completion to $x=\frac{2}{3}$ (ans given) $\mathrm{f}(1)=0$ or factorising to $(x-1)(6-x)$ or $(x-1)(x-6)$ 6 www
$$
\frac{7}{2} x^{2}-\frac{1}{3} x^{3}-6 x
$$

value at 2 - value at 1 $2 \frac{1}{6}$ or 2.16 to 2.17

$\frac{1}{2} \times \frac{4}{3} \times 4$ - their integral 0.5 o.e.

 \&

M1

A1

B1

M1

M1

A1

1

1

M1

M1

A1

M1

A1

 \&

differentiation must be used or use of $y=$ their $m x+c$ and subst (2, their 4), dependent on diffn seen

or using quadratic formula correctly to obtain $x=1$

for two terms correct; ignore $+c$

ft attempt at integration only

 \&

6

2

5
\end{tabular}

\hline 11 \& | i(A) |
| :--- |
| i(B) |
| ii(A) |
| ii(B) | \& | $150(\mathrm{~cm})$ or 1.5 m $\begin{aligned} & 1 / 2 \times 60^{2} \times 2.5 \text { or } 4500 \\ & 1 / 2 \times 140^{2} \times 2.5 \text { or } 24500 \end{aligned}$ |
| :--- |
| subtraction of these $20000\left(\mathrm{~cm}^{2}\right)$ isw |
| attempt at use of cosine rule |
| $\cos \mathrm{EFP}=\frac{3.5^{2}+2.8^{2}-1.6^{2}}{2 \times 2.8 \times 3.5}$ o.e. |
| 26.5 to 26.65 or 27 |
| 2.8 sin (their EFP) o.e. |
| 1.2 to 1.3 [m] | \& \[

$$
\begin{aligned}
& \hline 2 \\
& \\
& \text { M1 } \\
& \text { M1 } \\
& \text { DM1 } \\
& \text { A1 } \\
& \text { M1 } \\
& \\
& \text { M1 } \\
& \text { A1 } \\
& \text { M1 } \\
& \text { A1 }
\end{aligned}
$$

\] \& M1 for 2.5×60 or 2.5×0.6 or for 1.5 with no units or equivalents in m^{2} or $2 \mathrm{~m}^{2}$ condone 1 error in substitution \& | 2 |
| :---: |
| 4 |
| 4 |
| 3 |
| 3 |

\hline
\end{tabular}

