4752 (C2) Concepts for Advanced Mathematics

Section A

1	$4x^5$	1		
	$-12x^{-\frac{1}{2}}$	-	$\frac{1}{2}$	
		2	M1 for other $kx^{-\frac{1}{2}}$	
	+ c	1		4
2	95.25, 95.3 or 95	4	M3	
			$\frac{1}{2} \times 5 \times (4.3 + 0 + 2[4.9 + 4.6 + 3.9 + 2.3 + 1.2])$	
			M2 with 1 error, M1 with 2 errors.	
		_	Or M3 for 6 correct trapezia.	4
3	1.45 o.e.	2	M1 for $\frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6}$ oe	2
4	105 and 165	3	B1 for one of these or M1 for $2x = 210$	
			or 330	3
5	(i) graph along $y = 2$ with V at (3,2) (4,1) & (5,2)	2	M1 for correct V, or for $f(x+2)$	
	(ii) graph along $y = 6$ with V at	2	B1 for (2,k) with all other elements	
	(1,6) (2,3) & (3,6)		correct	4
6	(i) 54.5	2	B1 for $d = 2.5$	
	(ii) Correct use of sum of AP	M1	or M2 for correct formula for S_{30} with	
	formula with $n = 50, 20, 19$ or 21		their d	
	with their <i>d</i> and $a = 7 \text{ eg } S_{50} =$		M1 if one slip	
	$3412.5, S_{20} = 615$			
		2.64		
	Their $S_{50} - S_{20}$ dep on use of ap	M1		
	formula			
	2797.5 c.a.o.	A1		5
7	$8x - x^{-2}$ o.e.	2	B1 each term	
	their $dy = 0$			
	their $\frac{dy}{dx} = 0$	M1	s.o.i.	5
	correct step	DM1	s.o.i.	
	$x = \frac{1}{2}$ c.a.o.	A1		
				ļ
8	(i) 48	1		
	geometric, or GP	1		
	(ii) mention of $ r < 1$ condition o.e.	1	192	
	$\hat{\mathbf{S}} = 128$	2	M1 for $\frac{192}{1-\frac{1}{2}}$	5
			2	
9	(i) 1	1		
	(ii) (A) $3.5 \log_a x$	2	M1 for correct use of 1 st or 3 rd law	
	(ii) (B) $-\log_a x$	1		4

10	i	7 - 2x	M1		
10	1	x = 2, gradient = 3	A1	differentiation must be used	
		x = 2, y = 4	B1		
		y - their 4 = their grad (x - 2)	M1	or use of $y =$ their $mx + c$ and subst	
				(2, their 4), dependent on diffn	
		subst $y = 0$ in their linear eqn	M1	seen	
		completion to $x = \frac{2}{3}$ (ans given)	A1		6
	ii	f(1) = 0 or factorising to	1	or using quadratic formula	
		(x-1)(6-x) or $(x-1)(x-6)$		correctly to obtain $x = 1$	
		6 www	1		2
	iii	$\frac{7}{2}x^2 - \frac{1}{3}x^3 - 6x$	M1	for two terms correct; ignore $+c$	
		2 5			
		value at 2 – value at 1	M1	ft attempt at integration only	
		$2\frac{1}{6}$ or 2.16 to 2.17	A1		
			AI		
		$\frac{1}{2} \times \frac{4}{3} \times 4$ – their integral	M1		
		2 3			
		0.5 o.e.	A1		5
11	i(A)	150 (cm) or 1.5 m	2	M1 for 2.5×60 or 2.5×0.6 or for	
				1.5 with no units	2
	i (B)	$\frac{1}{2} \times 60^2 \times 2.5 \text{ or } 4500$	M1	or equivalents in m ²	
		$\frac{1}{2} \times 140^2 \times 2.5 \text{ or } 24500$	M1		
		subtraction of these $20,000,(am^2)$ is am^2	DM1 A1	or 2 m^2	4
		$20\ 000\ (\text{cm}^2)\ \text{isw}$	AI	01 2 111	4
	ii(A)	attempt at use of cosine rule	M1	condone 1 error in substitution	
	()		1,11		
		$3.5^2 + 2.8^2 - 1.6^2$			
		$\cos \text{EFP} = \frac{3.3 + 2.6 + 1.6}{2 \times 2.8 \times 3.5}$ o.e.	M1		
		26.5 to 26.65 or 27	A1		3
	ii(B)	2.8 sin (their EFP) o.e.	M1		
		1.2 to 1.3 [m]	A1		2

12	i	$\log a + \log (b^t)$ www	B1	condone omission of base	
		clear use of $\log (b^t) = t \log b \operatorname{dep}$	B1	throughout question	2
	ii	(2.398), 2.477, 2.556, 2.643, 2.724 points plotted correctly f.t. ruled line of best fit f.t.	T1 P1 1	On correct square	3
	iii	log $a = 2.31$ to 2.33 a = 204 to 214 log $b = 0.08$ approx	M1 A1 M1	ft their intercept ft their gradient	
		b = 1.195 to 1.215	A1		4
	iv	eg £210 million dep	1	their $\pounds a$ million	1
	v	$\frac{\log 1000 - \text{their intercept}}{(1 + 1)^{2}} \approx \frac{3 - 2.32}{0.08}$	M 1		
		their gradient 0.08 = 8.15 to 8.85	A1	or B2 from trials	2