RECOGNISING ACHIEVEMENT

ADVANCED SUBSIDIARY GCE MATHEMATICS (MEI)

Candidates answer on the Answer Booklet
OCR Supplied Materials:

- 8 page Answer Booklet
- Insert for Questions 5 and 12 (inserted)
- MEI Examination Formulae and Tables (MF2)

Other Materials Required:
None

Tuesday 13 January 2009
Morning
Duration: 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name clearly in capital letters, your Centre Number and Candidate Number in the spaces provided on the Answer Booklet.
- Use black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure that you know what you have to do before starting your answer.
- Answer all the questions.
- Do not write in the bar codes.
- \quad There is an insert for use in Questions 5 and 12.
- You are permitted to use a graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.
- The total number of marks for this paper is 72.
- This document consists of 8 pages. Any blank pages are indicated.

Section A (36 marks)

1 Find $\int\left(20 x^{4}+6 x^{-\frac{3}{2}}\right) d x$.

2 Fig. 2 shows the coordinates at certain points on a curve.

Fig. 2

Use the trapezium rule with 6 strips to calculate an estimate of the area of the region bounded by this curve and the axes.

3 Find $\sum_{k=1}^{5} \frac{1}{1+k}$.
[2]

4 Solve the equation $\sin 2 x=-0.5$ for $0^{\circ}<x<180^{\circ}$.

5 Answer this question on the insert provided.

Fig. 5 shows the graph of $y=\mathrm{f}(x)$.

Fig. 5

On the insert, draw the graph of
(i) $y=\mathrm{f}(x-2)$,
(ii) $y=3 \mathrm{f}(x)$.

6 An arithmetic progression has first term 7 and third term 12.
(i) Find the 20th term of this progression.
(ii) Find the sum of the 21st to the 50th terms inclusive of this progression.

7 Differentiate $4 x^{2}+\frac{1}{x}$ and hence find the x-coordinate of the stationary point of the curve $y=4 x^{2}+\frac{1}{x}$.

8 The terms of a sequence are given by

$$
\begin{aligned}
u_{1} & =192, \\
u_{n+1} & =-\frac{1}{2} u_{n} .
\end{aligned}
$$

(i) Find the third term of this sequence and state what type of sequence it is.
(ii) Show that the series $u_{1}+u_{2}+u_{3}+\ldots$ converges and find its sum to infinity.

9 (i) State the value of $\log _{a} a$.
(ii) Express each of the following in terms of $\log _{a} x$.
(A) $\log _{a} x^{3}+\log _{a} \sqrt{x}$
(B) $\log _{a} \frac{1}{x}$

Section B (36 marks)
10 Fig. 10 shows a sketch of the graph of $y=7 x-x^{2}-6$.

Fig. 10
(i) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and hence find the equation of the tangent to the curve at the point on the curve where $x=2$.

Show that this tangent crosses the x-axis where $x=\frac{2}{3}$.
(ii) Show that the curve crosses the x-axis where $x=1$ and find the x-coordinate of the other point of intersection of the curve with the x-axis.
(iii) Find $\int_{1}^{2}\left(7 x-x^{2}-6\right) \mathrm{d} x$.

Hence find the area of the region bounded by the curve, the tangent and the x-axis, shown shaded on Fig. 10.

11 (i)

Fig. 11.1

Fig. 11.1 shows the surface ABCD of a TV presenter's desk. AB and CD are arcs of circles with centre O and sector angle 2.5 radians. $\mathrm{OC}=60 \mathrm{~cm}$ and $\mathrm{OB}=140 \mathrm{~cm}$.
(A) Calculate the length of the arc CD.
(B) Calculate the area of the surface ABCD of the desk.
(ii) The TV presenter is at point P , shown in Fig. 11.2. A TV camera can move along the track EF, which is of length 3.5 m .

Fig. 11.2

When the camera is at E, the TV presenter is 1.6 m away. When the camera is at F , the TV presenter is 2.8 m away.
(A) Calculate, in degrees, the size of angle EFP.
(B) Calculate the shortest possible distance between the camera and the TV presenter.

12 Answer part (ii) of this question on the insert provided.

The proposal for a major building project was accepted, but actual construction was delayed. Each year a new estimate of the cost was made. The table shows the estimated cost, $£ y$ million, of the project t years after the project was first accepted.

Years after proposal accepted (t)	1	2	3	4	5
Cost (£y million)	250	300	360	440	530

The relationship between y and t is modelled by $y=a b^{t}$, where a and b are constants.
(i) Show that $y=a b^{t}$ may be written as

$$
\begin{equation*}
\log _{10} y=\log _{10} a+t \log _{10} b \tag{2}
\end{equation*}
$$

(ii) On the insert, complete the table and plot $\log _{10} y$ against t, drawing by eye a line of best fit. [3]
(iii) Use your graph and the results of part (i) to find the values of $\log _{10} a$ and $\log _{10} b$ and hence a and b.
(iv) According to this model, what was the estimated cost of the project when it was first accepted?
(v) Find the value of t given by this model when the estimated cost is $£ 1000$ million. Give your answer rounded to 1 decimal place.

