4752 Mark Scheme January 2010

4752 (C2) Concepts for Advanced Mathematics

	1	I 2 1	1	T	, .
1		$\frac{1}{2}x^2 + 3x^{-1} + c$ o.e.	3	1 for each term	3
2	(i)	5 with valid method	1	eg sequence has period of 4 nos.	
	(ii)	165 www	2	M1 for $13 \times (1 + 3 + 5 + 3) + 1 + 3 + 5$ or for $14 \times (1 + 3 + 5 + 3) - 3$	3
3		rt angled triangle with $\sqrt{2}$ on one side	1	or M1 for $\cos^2 \theta = 1 - \sin^2 \theta$ used	
		and 3 on hyp Pythag. used to obtain remaining side = $\sqrt{7}$	1	A1 for $\cos \theta = \frac{\sqrt{7}}{\sqrt{9}}$	
		$\tan \theta = \frac{opp}{adj} = \frac{\sqrt{2}}{\sqrt{7}}$ o.e.	1	A1 for $\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\sqrt{2}}{\sqrt{7}}$ o.e.	3
4		radius = 6.5 [cm]	3	M1 for $\frac{1}{2} \times r^2 \times 0.4$ [= 8.45] o.e. and M1 for $r^2 = \frac{169}{4}$ o.e. [= 42.25]	3
5	(i)	sketch of correct shape with P (-0.5,2) Q (0,4) and R (2,2)	2	1 if Q and one other are correct	
	(ii)	sketch of correct shape with P (-1,0.5) Q (0,1) and R (4,0.5)	2	1 if Q and one other are correct	4
6	(i)	205	3	M1 for AP identified with $d = 4$ and M1 for $5 + 50 d$ used	
	(ii)	$\frac{25}{3}$ o.e.	2	M1 for $r = \frac{2}{5}$ o.e.	5
7	(i)	$\frac{\sin A}{5.6} = \frac{\sin 79}{8.4}$ s.o.i.	M1		
		5.6 8.4 [A =] 40.87 to 41	A1		
	(ii)	$[BC^2 =] 5.6^2 + 7.8^2 - 2 \times 5.6 \times 7.8 \times$	M1 A1		
		cos ("180-79") = 108.8 to 108.9	A1		5
		[BC =] 10.4()			
8		$y' = 3x^{-\frac{1}{2}}$	M1	condone if unsimplified	
		$\frac{3}{4}$ when $x = 16$	A1		
		y = 24 when $x = 16y – their 24 = their \frac{3}{4} (x – 16)$	B1 M1	dv	
		$y - 24 = \frac{3}{4}(x - 16)$ o.e.	A1	dependent on $\frac{dy}{dx}$ used for m	5

475	52 Mar		c Sche	me January 2	January 2010	
9	(i)	y †	G1	for curve of correct shape in both quadrants		
			DG1	must go through (0, 1) shown		
	(ii)	$2x + 1 = \frac{\log 10}{\log 3} \text{o.e.}$	M1	or M1 for $2x + 1 = \log_3 10$	5	
	()		A2	A1 for other versions of 0.547or 0.548		
10	(i)	$ [x =] 0.55 3x^2 - 6x - 9 $	M1			
		use of their $y' = 0$	M1			
		x = -1	A1			
		x = 3	A1			
		valid method for determining nature	M1			
		of turning point	A 1		6	
		$\max \text{ at } x = -1 \text{ and min at } x = 3$	A1	c.a.o.	6	
	(ii)	$x(x^2-3x-9)$	M1			
		$\frac{3 \pm \sqrt{45}}{2} \text{ or } (x - \frac{3}{2})^2 = 9 + \frac{9}{4}$	M1			
		$0, \frac{3}{2} \pm \frac{\sqrt{45}}{2}$ o.e.	A1		3	
	(iii)	sketch of cubic with two turning	G1			
		points correct way up x-intercepts – negative, 0, positive	DG1		2	
		shown				
11	(i)	47.625 [m ²] to 3 sf or more, with correct method shown	4	M3 for $\frac{1.5}{2}$ × (2.3 + 2 + 2[2.7 + 3.3 + 4 +	4	
				4.8 + 5.2 + 5.2 + 4.4])		
	(;;)	43.05	2	M1 for		
	(ii)	43.03	2	$1.5 \times (2.3+2.7+3.3+4+4.8+5.2+4.4+2)$	2	
	(iii)	$-0.013x^{4}/4 + 0.16x^{3}/3 - 0.082x^{2}/2 +$	M2	M1 for three terms correct		
		2.4x o.e. their integral evaluated at $x = 12$ (and	M1	dep on integration attempted		
		0) only 47.6 to 47.7	A1		4	
	(iv)	5.30 found	1			
		compared with 5.2 s.o.i.	D1		2	
12	(i)	$\log P = \log a + bt \text{www}$	1			
		comparison with $y = mx + c$ s.o.i.	1	must be with correct equation		
		$intercept = log_{10} a$	1	dependent on correct equation	3	
	(ii)	[2.12, 2.21], 2.32, 2.44, 2.57, 2.69	1			
	\	plots ft	1			
		ruled line of best fit	1	Between (10, 2.08) and (10, 2.12)	3	

4752 Mark Scheme January 2010

(iii)	$0.0100 \le m < 0.0125$	B2	M1 for $\frac{y - \text{step}}{x - \text{step}}$	
	$a = 10^{c}$ or $loga = c$	B1	$1.96 \le c \le 2.02$	
	$P = 10^{c} \times 10^{mt} \text{ or } 10^{mt+c}$	B1	f.t. their m and a	4
(iv)	use of $t = 105$ 1.0 – 2.0 billion approx	B1 B1		
	unreliable since extrapolation o.e.	E1		3