4752 (C2) Concepts for Advanced Mathematics

1		$1 / 2 x^{2}+3 x^{-1}+c$ o.e.	3	1 for each term	3
2	(i) (ii)	5 with valid method 165 www	1 2	eg sequence has period of 4 nos. M1 for $13 \times(1+3+5+3)+1+3+5$ or for $14 \times(1+3+5+3)-3$	3
3		rt angled triangle with $\sqrt{ } 2$ on one side and 3 on hyp Pythag. used to obtain remaining side $\begin{aligned} & =\sqrt{7} \\ & \tan \theta=\frac{o p p}{a d j}=\frac{\sqrt{2}}{\sqrt{7}} \text { o.e. } \end{aligned}$	1 1 1	or M1 for $\cos ^{2} \theta=1-\sin ^{2} \theta$ used A1 for $\cos \theta=\frac{\sqrt{7}}{\sqrt{9}}$ A1 for $\tan \theta=\frac{\sin \theta}{\cos \theta}=\frac{\sqrt{2}}{\sqrt{7}}$ o.e.	3
4		radius $=6.5[\mathrm{~cm}]$	3	M1 for $1 / 2 \times r^{2} \times 0.4[=8.45]$ o.e. and M1 for $r^{2}=\frac{169}{4}$ o.e. [$=42.25$]	3
5	(i) (ii)	sketch of correct shape with P ($-0.5,2$) $\mathrm{Q}(0,4)$ and $\mathrm{R}(2,2)$ sketch of correct shape with $P(-1,0.5) \quad Q(0,1)$ and $R(4,0.5)$	2 2	1 if Q and one other are correct 1 if Q and one other are correct	4
6	(i) (ii)	205 $\frac{25}{3}$ o.e.	3 2	M1 for AP identified with $d=4$ and M1 for $5+50 d$ used M1 for $r=\frac{2}{5}$ o.e.	5
7	(i) (ii)	$\begin{aligned} & \frac{\sin \mathrm{A}}{5.6}=\frac{\sin 79}{8.4} \text { s.o.i. } \\ & {[\mathrm{A}=] 40.87 \text { to } 41} \\ & {\left[\mathrm{BC}^{2}=\right] 5.6^{2}+7.8^{2}-2 \times 5.6 \times 7.8 \times} \\ & \cos (" 180-79 ") \\ & =108.8 \text { to } 108.9 \\ & {[\mathrm{BC}=] 10.4(\ldots)} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$		5
8		$\begin{aligned} & y^{\prime}=3 x^{-\frac{1}{2}} \\ & 3 / 4 \text { when } x=16 \\ & y=24 \text { when } x=16 \\ & y-\text { their } 24=\text { their } 3 / 4(x-16) \\ & y-24=3 / 4(x-16) \text { o.e. } \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	condone if unsimplified dependent on $\frac{\mathrm{d} y}{\mathrm{~d} x}$ used for m	5

\begin{tabular}{|c|c|c|c|c|c|}
\hline 9 \& (i) \&
\[
\begin{aligned}
\& 2 x+1=\frac{\log 10}{\log 3} \text { o.e. } \\
\& {[x=] 0.55}
\end{aligned}
\] \& \begin{tabular}{l}
G1 \\
DG1 \\
M1 \\
A2
\end{tabular} \& \begin{tabular}{l}
for curve of correct shape in both quadrants \\
must go through \((0,1)\) shown \\
or M1 for \(2 x+1=\log _{3} 10\) \\
A1 for other versions of \(0.547 \ldots\) or 0.548
\end{tabular} \& 5 \\
\hline 10 \& \begin{tabular}{l}
(i) \\
(ii) \\
(iii)
\end{tabular} \& \begin{tabular}{l}
\[
3 x^{2}-6 x-9
\] \\
use of their \(y^{\prime}=0\)
\[
\begin{aligned}
\& x=-1 \\
\& x=3
\end{aligned}
\] \\
valid method for determining nature of turning point \(\max\) at \(x=-1\) and \(\min\) at \(x=3\)
\[
\begin{aligned}
\& x\left(x^{2}-3 x-9\right) \\
\& \frac{3 \pm \sqrt{45}}{2} \text { or }\left(x-\frac{3}{2}\right)^{2}=9+\frac{9}{4} \\
\& 0, \frac{3}{2} \pm \frac{\sqrt{45}}{2} \text { o.e. }
\end{aligned}
\] \\
sketch of cubic with two turning points correct way up \(x\)-intercepts - negative, 0 , positive shown
\end{tabular} \& \begin{tabular}{l}
M1 \\
M1 \\
A1 \\
A1 \\
M1 \\
A1 \\
M1 \\
M1 \\
A1 \\
G1 \\
DG1
\end{tabular} \& c.a.o. \& 6
3
3

2

\hline 11 \& | (i) |
| :--- |
| (ii) |
| (iii) |
| (iv) | \& | $47.625\left[\mathrm{~m}^{2}\right]$ to 3 sf or more, with correct method shown |
| :--- |
| 43.05 $-0.013 x^{4} / 4+0.16 x^{3} / 3-0.082 x^{2} / 2+$ $2.4 x \text { o.e. }$ |
| their integral evaluated at $x=12$ (and |
| 0) only |
| 47.6 to 47.7 |
| 5.30.. found |
| compared with 5.2 s.o.i. | \& | 4 |
| :--- |
| 2 |
| M2 |
| M1 |
| A1 |
| 1 D 1 | \& | $\begin{aligned} & \text { M3 for } \frac{1.5}{2} \times(2.3+2+2[2.7+3.3+4+ \\ & 4.8+5.2+5.2+4.4]) \end{aligned}$ |
| :--- |
| M1 for $1.5 \times(2.3+2.7+3.3+4+4.8+5.2+4.4+2)$ |
| M1 for three terms correct dep on integration attempted | \& 4

2

4

\hline 12 \& | (i) |
| :--- |
| (ii) | \& | $\log P=\log a+b t \quad$ www comparison with $y=m x+c$ s.o.i. intercept $=\log _{10} a$ $\text { [2.12, 2.21], 2.32, 2.44, 2.57, } 2.69$ |
| :--- |
| plots ft |
| ruled line of best fit | \& \[

$$
\begin{array}{|l|}
\hline 1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1
\end{array}
$$

\] \& | must be with correct equation dependent on correct equation |
| :--- |
| Between ($10,2.08$) and ($10,2.12$) | \& 3

3

\hline
\end{tabular}

