RECOGNIIING ACHIEVEMENT

ADVANCED SUBSIDIARY GCE MATHEMATICS (MEI)

INSTRUCTIONS TO CANDIDATES

- Write your name clearly in capital letters, your Centre Number and Candidate Number in the spaces provided on the Answer Booklet.
- Use black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure that you know what you have to do before starting your answer.
- Answer all the questions.
- Do not write in the bar codes.
- There is an insert for use in Question 12.
- You are permitted to use a graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.
- The total number of marks for this paper is 72.
- This document consists of 8 pages. Any blank pages are indicated.

Section A (36 marks)

1 Find $\int\left(x-\frac{3}{x^{2}}\right) \mathrm{d} x$.

2 A sequence begins

$$
\begin{array}{lllllllllll}
1 & 3 & 5 & 3 & 1 & 3 & 5 & 3 & 1 & 3 & \ldots
\end{array}
$$

and continues in this pattern.
(i) Find the 55th term of this sequence, showing your method.
(ii) Find the sum of the first 55 terms of the sequence.

3 You are given that $\sin \theta=\frac{\sqrt{2}}{3}$ and that θ is an acute angle. Find the exact value of $\tan \theta$.

4 A sector of a circle has area $8.45 \mathrm{~cm}^{2}$ and sector angle 0.4 radians. Calculate the radius of the sector.

Fig. 5

Fig. 5 shows a sketch of the graph of $y=\mathrm{f}(x)$. On separate diagrams, sketch the graphs of the following, showing clearly the coordinates of the points corresponding to P, Q and R .

$$
\text { (i) } y=\mathrm{f}(2 x)
$$

(ii) $y=\frac{1}{4} \mathrm{f}(x)$

6 (i) Find the 51 st term of the sequence given by

$$
\begin{align*}
u_{1} & =5 \\
u_{n+1} & =u_{n}+4 \tag{3}
\end{align*}
$$

(ii) Find the sum to infinity of the geometric progression which begins

$$
\begin{equation*}
5 \quad 2 \quad 0.8 \quad \ldots . \tag{2}
\end{equation*}
$$

7

Fig. 7

Fig. 7 shows triangle ABC , with $\mathrm{AB}=8.4 \mathrm{~cm}$. D is a point on AC such that angle $\mathrm{ADB}=79^{\circ}$, $B D=5.6 \mathrm{~cm}$ and $\mathrm{CD}=7.8 \mathrm{~cm}$.

Calculate
(i) angle BAD ,
(ii) the length BC.

8 Find the equation of the tangent to the curve $y=6 \sqrt{x}$ at the point where $x=16$.

9 (i) Sketch the graph of $y=3^{x}$.
(ii) Use logarithms to solve $3^{2 x+1}=10$, giving your answer correct to 2 decimal places.

Section B (36 marks)

10 (i) Differentiate $x^{3}-3 x^{2}-9 x$. Hence find the x-coordinates of the stationary points on the curve $y=x^{3}-3 x^{2}-9 x$, showing which is the maximum and which the minimum.
(ii) Find, in exact form, the coordinates of the points at which the curve crosses the x-axis.
(iii) Sketch the curve.

11 Fig. 11 shows the cross-section of a school hall, with measurements of the height in metres taken at 1.5 m intervals from O .

Fig. 11
(i) Use the trapezium rule with 8 strips to calculate an estimate of the area of the cross-section.
(ii) Use 8 rectangles to calculate a lower bound for the area of the cross-section.

The curve of the roof may be modelled by $y=-0.013 x^{3}+0.16 x^{2}-0.082 x+2.4$, where x metres is the horizontal distance from O across the hall, and y metres is the height.
(iii) Use integration to find the area of the cross-section according to this model.
(iv) Comment on the accuracy of this model for the height of the hall when $x=7.5$.

12 Answer part (ii) of this question on the insert provided.

Since 1945 the populations of many countries have been growing. The table shows the estimated population of 15- to 59-year-olds in Africa during the period 1955 to 2005.

Year	1955	1965	1975	1985	1995	2005
Population (millions)	131	161	209	277	372	492

Source: United Nations

Such estimates are used to model future population growth and world needs of resources. One model is $P=a 10^{b t}$, where the population is P millions, t is the number of years after 1945 and a and b are constants.
(i) Show that, using this model, the graph of $\log _{10} P$ against t is a straight line of gradient b. State the intercept of this line on the vertical axis.
(ii) On the insert, complete the table, giving values correct to 2 decimal places, and plot the graph of $\log _{10} P$ against t. Draw, by eye, a line of best fit on your graph.
(iii) Use your graph to find the equation for P in terms of t.
(iv) Use your results to estimate the population of 15 - to 59 -year-olds in Africa in 2050. Comment, with a reason, on the reliability of this estimate.

