GCE

Mathematics (MEI)

Advanced Subsidiary GCE
Unit 4752: Concepts for Advanced Mathematics

Mark Scheme for January 2011

SECTION A

1	11.4 o.e.	2	M1 for $12 / 3+12 / 4+12 / 5+12 / 6$ o.e.	M0 unless four terms summed
2	$\frac{1}{2} x^{6}+4 x^{\frac{1}{2}}+c$	4	B1 for $\frac{1}{2} x^{6}$, M1 for $k x^{\frac{1}{2}}$, A1 for $k=4$ or $\frac{\mathbf{4}}{\mathbf{1}}, \mathbf{B 1}$ for $+c$ dependent on at least one power increased	allow $\frac{\mathbf{3}}{\mathbf{6}} x^{6}$ isw,
3	$\begin{aligned} & 1 / 2 \times 1.5 \times(0.6+0.7+ \\ & 2(2.3+3.1+2.8+1.8)) \\ & =15.975 \text { rounded to } 2 \text { s.f. or more } \end{aligned}$	M2	M1 if one error or M2 for sum of 5 unsimplified individual trapezia: $2.175,4.05,4.425,3.45,1.875$	basic shape of formula must be correct. Must be 5 strips. M0 if pair of brackets omitted or $h=7.5$ or 1 . allow recovery of brackets omitted to obtain correct answer. M0 for other than 5 trapezia isw only if 15.975 clearly identified as cross-sectional area
4	(i) $(3,15)$	B2	B1 for each coordinate	s.c. B0 for (3, 5)
4	(ii) (1.5, 5)	B2	B1 for each coordinate	s.c. B0 for (3, 5)
5	$\begin{aligned} & a r=6 \text { and } a r^{4}=-48 \\ & r=-2 \\ & \text { tenth term }=1536 \\ & \frac{-3\left(1-(-2)^{n}\right)}{1-(-2)} \text { o.e. } \\ & (-2)^{n}-1 \end{aligned}$	M1 M1 A1 M1 A1	B2 for $r=-2 \mathrm{WWW}$ B3 for 1536 www allow M1 for $a=6 \div$ their r and substitution in GP formula with their a and r c.a.o.	ignore incorrect lettering such as $\mathrm{d}=-2$ condone the omission of the brackets round "-2" in the numerator and / or the denominator

6	$\begin{aligned} & a+2 d=24 \text { and } a+9 d=3 \\ & d=-3 ; a=30 \\ & \mathrm{~S}_{50}-\mathrm{S}_{20} \\ & -2205 \text { cao } \end{aligned}$	M1 A1 A1 M1 A1	if $\mathbf{M 0}, \mathbf{B} \mathbf{2}$ for either, $\mathbf{B} 3$ for both ft their a and d; M1 for $\mathrm{S}_{30}=\frac{30}{2}\left(u_{21}+u_{50}\right)$ o.e. B2 for - 2205 www	do not award B2 or B3 if values clearly obtained fortuitously $\begin{aligned} & \mathrm{S}_{50}=-2175 ; \mathrm{S}_{20}=30 \\ & u_{21}=30-20 \times 3=-30 \\ & u_{50}=30-49 \times 3=-117 \end{aligned}$
7	(i) $17 \log _{10} x$ or $\log _{10} x^{17}$	B2	M1 for $5 \log _{10} x$ or $12 \log _{10} x$ or $\log _{10} x^{12}$ as part of the first step	condone omission of base
7	(ii) $-b$	B2	M1 for $\log _{a} 1=0$ or $\log _{a} a=1$ soi	allow 0-b
8	$\begin{aligned} & \text { substitution of } \sin ^{2} \theta=1-\cos ^{2} \theta \\ & -5 \cos ^{2} \theta=\cos \theta \\ & \theta=90 \text { and } 270, \\ & 102 \\ & 258 \\ & 101 \text { and } 259 \end{aligned}$	$\begin{array}{\|c\|} \hline \text { M1 } \\ \text { A1 } \\ \\ \text { SC } \\ \text { 1 } \end{array}$	soi or better accept 101.5(...) and 258.(46...) rounded to 3 or more sf; if M0, allow B1 for both of 90 and 270 and $\mathbf{B 1}$ for 102 and $\mathbf{B 1}$ for 258 (to 3 or more sf)	if the 4 correct values are presented, ignore any extra values which are outside the required range, but apply a penalty of minus 1 for extra values in the range if given in radians deduct 1 mark from total awarded (1.57, 1.77, 4.51, 4.71)

9	area sector $=\frac{1}{2} \times r^{2} \times \frac{\pi}{6}\left[=\frac{\pi r^{2}}{12}\right]$ area triangle $=\frac{1}{2} \times a^{2} \times \sin \frac{\pi}{6}\left[=\frac{a^{2}}{4}\right]$ $1 / 2 a^{2} \times 1 / 2=1 / 2 \times r^{2} \times \frac{\pi}{6} \times 1 / 2$	M1	soi
$\frac{a^{2}}{4}=\frac{\pi r^{2}}{24}$ o.e. and completion to given answer	soi	M1	soi

-

allow sin30
no follow through marks available
at least one correct intermediate step required, and no wrong working to obtain given answer

Section A Total: 36

11	(i) $\frac{x^{4}}{4}-x^{3}-\frac{x^{2}}{2}+3 x$ their integral at 3 - their integral at 1 $[=-2.25-1.75]$ $=-4$ isw represents area between curve and x axis between $x=1$ and 3 negative since below x-axis	M2 M1 A1 B1 B1	M1 if at least two terms correct dependent on integration attempted	ignore $+c$ M0 for evaluation of $x^{3}-3 x^{2}-x+3$ or of differentiated version B0 for area under or above curve between $x=1$ and 3
11	(ii) $y^{\prime}=3 x^{2}-6 x-1$ their $y^{\prime}=0$ soi $x=\frac{-b \pm \sqrt{5^{2}-4 a \sigma}}{2 a} \text { with } a=3, b=-$ 6 and $c=-1$ isw $x=\frac{6 \pm \sqrt{48}}{6}$ or better as final answer $\frac{6-\sqrt{48}}{6}<x<\frac{6+\sqrt{48}}{6}$ or ft their final answer	M1 M1 M1 A1 B1	dependent on differentiation attempted or $3(x-1)^{2}-4[=0]$ or better eg A1 for $1 \pm \frac{2}{3} \sqrt{3}$ allow \leq instead of $<$	no follow through; NB $\frac{\frac{6 \pm \sqrt{4 \pi}}{6}}{6}$ or better stated without working implies use of correct method A0 for incorrect simplification, eg $1 \pm \sqrt{ } 48$ allow B1 if both inequalities are stated separately and it's clear that both apply allow B1 if the terms and the signs are in reverse order
12	(i) 50% of 25000 is 12500 and the population [in 2005] is 12000 [so consistent]	B1	or 12000 is 48% of 25000 so less than 50\%[so consistent]	
12	$\begin{aligned} & \text { (ii) } \log _{10} P=\log _{10} a-k t \text { or } \\ & \log _{10} \bar{\Omega}=- \text { kt o.e. www } \end{aligned}$	B2	condone omission of base; M1 for $\log { }_{10} P=\log _{10} a+\log _{10} 10^{-k t}$ or better www	

12	(iii) 4.27, 4.21, 4.13, 4.08 plots ruled line of best fit drawn	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	accept 4.273..., 4.2108..., 4.130..., 4.079... rounded to 2 or more dp 1 mm tolerance ft their values if at least 4 correct values are correctly plotted	f.t. if at least two calculated values correct must have at least one point on or above and at least one point on or below the line and must cover $0 \leq t \leq 25$
12	$\begin{aligned} & \text { (iv) } a=25000 \text { to } 25400 \\ & 0.01 \leq k \leq 0.014 \\ & P=a \times 10^{-k t} \text { or } P=10^{\log a-k t} \text { with } \\ & \text { values in acceptable ranges } \end{aligned}$	B1 B2 B1	allow $10^{\text {4.4. }}$ M1 for $-k=\frac{\Delta y}{\Delta x}$ using values from table or graph; condone $+k$ B0 if left in logarithmic form	M1 for a correct first step in solving a pair of valid equations in either form A1 for k A1 for a A1 for $P=a \times 10^{-k t}$
12	(v) $P=a \times 10^{-35 k}$ 8600 to 9000 comparing their value with 9375 o.e. and reaching the correct conclusion for their value	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	Their a and k f.t.	allow $\log P=\log a-35 k$

Section B Total: 36

