Q	uestior	Answer	Marks	Guida	nce
1		$kx^{\frac{5}{2}}$	M1		
		<i>k</i> = 12	A1		
		+ <i>c</i>	A1 [3]		
2	(i)	converging + valid reason	1		eg converges to 0, $r = \frac{1}{2}$, difference between terms decreasing, sum of terms converges to 6, G.P. with $ r < 1$
			[1]		
2	(ii)	neither + valid reason	1		eg divergent oe, A.P., $d = 4$ oe, convergent and periodic ruled out with correct reasons
			[1]		
2	(iii)	periodic + valid reason	1		eg repeating cycle of terms
			[1]		
3	(i)	(0.8, -2) oe	2	B1 each coordinate	SC0 for (4, -2)
			[2]		
3	(ii)	Translation	B1		
		$\begin{pmatrix} 90\\0 \end{pmatrix}$ oe	B1	or eg 270 to left	allow B2 for rotation through 180° about (45, 0) oe
			[2]		

Q	uesti	on	Answer	Marks	Guidance		
4	(i)		1.2 <i>r</i> = 4.2 3.5 cao	M1 A1	or $\frac{68.7549}{360} \times 2\pi r = 4.2$ with θ to 3 sf or better	B2 if correct answer unsupported	
				[2]			
4	(ii)		$\cos 0.6 = \frac{d}{\text{their 3.5}}$	M1	or $\cos 34.377=\frac{d}{\text{their }3.5}$ with θ to 3 sf or better	or correct use of Sine Rule with 0.9708 (55.623°) or area = $5.709 = 0.5 \times h \times 3.952$,	
			2.888 to 2.9	A1		or $3.5^2 - 1.976^2 = d^2$	
				[2]			
5			gradient = $\frac{4\sqrt{9.5} - 12}{9.5 - 9}$	M1		$4\sqrt{38} - 244\sqrt{38} - 24$	
			0.6577 to 0.66	A1	or 0.657656isw		
			$9 < x_{\rm C} < 9.5$	B1		allow $8.53 \le x_{\rm C} < 9$	
				[3]			
6			$6x^2 + 18x - 24$	B1			
			their $6x^2 + 18x - 24 = 0$ or > 0 or ≥ 0	M1		or sketch of $y = 6x^2 + 18x - 24$ with attempt to find <i>x</i> -intercepts	
			-4 and $+1$ identified oe x < -4 and $x > 1$ cao	AI A1	or $x \le -4$ and $x \ge 1$	if B0M0 then SC2 for fully correct	
				[4]			

⁴⁷⁵²

4752

PMT

Q	uestior	n Answer	Marks	Guidance		
7		$\cos A = \frac{105^2 + 92^2 - 75^2}{2 \times 105 \times 92} \text{ oe}$	M1	or $\cos B = \frac{75^2 + 92^2 - 105^2}{2 \times 75 \times 92}$ oe	or $\cos C = \frac{105^2 + 75^2 - 92^2}{2 \times 105 \times 75}$ oe	
		0.717598soi	A1	0.2220289soi	0.519746soi	
		A = 44.14345° soi [0.770448553]	A1	B = 77.1717719° soi [1.346901422]	C = 58.6847827° soi [1.024242678]	
		$\frac{1}{2} \times 92 \times 105 \times \sin(\text{their A})$	M1	or $\frac{1}{2} \times 75 \times 92 \times \sin(\text{their B})$	ignore minor errors due to premature rounding for second A1 condone <i>A</i> , <i>B</i> or <i>C</i> wrongly attributed or $\frac{1}{2} \times 75 \times 105 \times \sin(their C)$	
		3360 or 3361 to 3365	A1		or M2 for	
					$\frac{M3 \text{ for}}{\sqrt{136(136 - 75)(136 - 105)(136 - 92)}}$	
					A2 for correct answer 3360 or 3363 - 3364	
			[5]			
8	(i)	у м	M1	for curve of correct shape in both quadrants	SC1 for curve correct in 1^{st} quadrant and touching (0,1) or identified in commentary	
			A1	through (0, 1) shown on graph or in commentary		
		x	[2]			

4752

Q	uesti	on	Answer	Marks	Guidance		
8	(ii)		$5x - 1 = \frac{\log_{10} 500000}{\log_{10} 3}$	M1	or $5x - 1 = \log_3 500\ 000$	condone omission of base 10 use of logs in other bases may earn full marks	
			$x = (\frac{\log_{10} 500000}{\log_{10} 3} + 1) \div 5$	M1	$x = (\log_3 500000 + 1) \div 5$		
			[x =] 2.588 to 2.59	A1	oe; or B3 www	if unsupported, B3 for correct answer to 3 sf or more www	
				[3]			
9	(i)		$\left(\frac{\sin\theta}{\cos\theta}\right) = 1 \text{ oe}$ $\frac{1}{\cos\theta} = 1 \text{ oe}$	M1			
			$\sin \theta = \cos^2 \theta$ and completion to given result	A1 [2]	www		
9	(ii)		$\sin^2\theta + \sin\theta - 1[=0]$	M1	allow 1 on RHS if attempt to complete	condone $y^2 + y - 1 = 0$	
			$[\sin \theta =] \frac{-1 \pm \sqrt{5}}{2}$ oe may be implied by correct answers $[\theta =] 38.17, \text{or } 38.2 \text{ and } 141.83, 141.8 \text{ or}$ 142	A1 A1	square may be implied by correct answers ignore extra values outside range, A0 if extra values in range or in radians	mark to benefit of candidate ignore any work with negative root & condone omission of negative root with no comment eg M1 for 0.618 if unsupported, B1 for one of these, B2	
				[3]	NB 0.6662 and 2.4754 if working in radian mode earns M1A1A0	for both. If both values correct with extra values in range, then B1.NB 0.6662 and 2.4754 to 3sf or more	

Q	uesti	on	Answer	Marks	Guidar	nce
10	(i)		at A $y = 3$	B1		
			$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x - 4$	B1		
			their $\frac{\mathrm{d}y}{\mathrm{d}x} = 2 \times 4 - 4$	M1*	must follow from attempt at differentiation	
			grad of normal = $^{-1}/_{\text{their 4}}$	M1dep*		
			$y - 3 = (^{-1}/_4) \times (x - 4)$ oe isw	A1		
			substitution of $y = 0$ and completion to given result with at least 1 correct interim	A1	or substitution of $x = 16$ to obtain $y = 0$	correct interim step may occur before substitution
			step www	[6]		
10	(ii)		at B, <i>x</i> = 3	B1	may be embedded	
			$F[x] = \frac{x^3}{3} - \frac{4x^2}{2} + 3x$	M1*	condone one error, must be three terms, ignore $+ c$	
			F[4] – F[their 3]	M1* dep	dependent on integration attempted	
			area of triangle = 18 soi	B1		may be embedded in final answer
			area of region = $19\frac{1}{3}$ oe isw	A1	19.3 or better	
				[5]		

⁴⁷⁵²

	January 2
--	-----------

C	luesti	on	Answer	Marks	Guidance	
11	(i)	(A)	2A + D = 25 oe	B1		condone lower-case a and d
			4A + 6D = 250 oe	B1		
			D=50,	B1		
			A = -12.5 oe	B1		
				[4]		
11	(i)	(B)	$50_{(2 \times theirA + 49 \times theirD)} [= 60.625] \text{ or}$			
			$\frac{1}{2}(2 \times metrA + 49 \times metrD) [= 00 025] or$	M1	or $a = \text{their } A + 20D$	
			20 (2 , 4 , 5 , 4 , 10 , 4 , 5 D) [, 0250]			
			$\frac{-}{2}(2 \times \text{their } A + 19 \times \text{their } D) [= 9250]$			
					20	20
			their " $S_{50} - S_{20}$ "	M1	$S_{30} = \frac{30}{2}(a+l)$ oe with $l = \text{their } A + 49D$	$S_{30} = \frac{30}{2} (2 \times their 987.5 + 29 \times their 50)$
			20 20	1111		30 2
			51 375 cao	Δ1		
				[3]		
				[J]		

Q	uesti	on	Answer	Marks	Guidance		
11	(ii)		$\frac{a(r^2-1)}{r-1} = 25 \text{ or } \frac{a(r^4-1)}{r-1} = 250$	B1			
			$\frac{a\frac{(r^4-1)}{r-1}}{a\frac{(r^2-1)}{(r-1)}} = \frac{250}{25}$ oe	M1		allow $a(1 + r)$ as the denominator in the quadruple- decker fraction	
			and completion to given result www		at least one correct interim step required	$r^2 - r$ oo may be used	
			use of $r^4 - 1 = (r^2 - 1)(r^2 + 1)$ to obtain	M1	or multiplication and rearrangement of	7 = x de may be used	
			$r^2 + 1 = 10$ www		quadratic to obtain $r^4 - 10r^2 + 9 = 0$ oe with all three terms on one side	or M1 for valid alternative algebraic approaches eg using $a(1 + r) = 25$ and $ar^2 + ar^3 = ar^2 (1 + r) = 225$	
			$r = \pm 3$	A1		or B2 for all four values correct, B1 for both <i>r</i> values or both <i>a</i> values or one pair of correct values if second M mark not earned	
			a = 6.25 or -12.5 oe	A1	or A1 for one correct pair of values of r and		
				[5]	a		
12	(i)		$\log_{10}p = \log_{10}a + \log_{10}10^{kt}$	M1	condone omission of base;	if unsupported, B2 for correct equation	
			$\log_{10}p = \log_{10}a + kt \text{ www}$	A1			
				[2]			
12	(ii)		2.02, 2.13, 2.23	B1	allow given to more sig figs	2.022304623, 2.129657673, 2.229707433	
			plots correct	Blf.t.	to nearest half square		
			ruled line of best fit	BI	y-intercept between 1.65 and 1.7 and at least one point on or above the line and at least one point on or below the line	ft their plots must cover range from $x = 9$ to 49	
				[3]			

4752

Q	uesti	on	Answer	Marks	Guidar	nce
12	(iii)		0.0105 to 0.0125 for <i>k</i>	B1		must be connected to k
			1.66 to 1.69 for $\log_{10}a$ or 45.7 to 49.0 for a	B1		must be connected to a
			$\log_{10}p = \text{their } kt + \text{their } \log_{10}a$	B1	must be a correct form for equation of line and with their <i>y</i> -intercept and their gradient (may be found from graph or from table, must be correct method)	
			$p = \text{their "47.9} \times 10^{0.0115t}$ " or $10^{1.6785+0.0115t}$ "	B1	as above, "47.9" and "0.0115" must follow from correct method	
10	(*)		45.7.4 A0.0 m ² 11 ² m	[4]	(arither and the sector of the sector of	
12	(IV)		45.7 to 49.0 million	1	million needed, not just the value of p	
				[1]		
12	(v)		reading from graph at 2.301	M1*	or $\log_{10}200 = "\log_{10}a + kt"$	or $200 = "10^{\log a + kt}", oe$
			their 54	M1dep*	eg for their $t = \frac{\log 200 - 1.68}{0.0115}$	or M1 for their $t = \frac{\log \frac{200}{47.9}}{0.0115}$
			2014 cao	A1 [3]	if unsupported, allow B3 only if consistent with graph	