Friday 18 January 2013 - Afternoon
 AS GCE MATHEMATICS (MEI)

4752/01 Concepts for Advanced Mathematics (C2)

QUESTION PAPER

Candidates answer on the Printed Answer Book.
OCR supplied materials:
Duration: 1 hour 30 minutes

- Printed Answer Book 4752/01
- MEI Examination Formulae and Tables (MF2)

Other materials required:

- Scientific or graphical calculator

INSTRUCTIONS TO CANDIDATES

These instructions are the same on the Printed Answer Book and the Question Paper.

- The Question Paper will be found in the centre of the Printed Answer Book.
- Write your name, centre number and candidate number in the spaces provided on the Printed Answer Book. Please write clearly and in capital letters.
- Write your answer to each question in the space provided in the Printed Answer Book. Additional paper may be used if necessary but you must clearly show your candidate number, centre number and question number(s).
- Use black ink. HB pencil may be used for graphs and diagrams only.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Answer all the questions.
- Do not write in the bar codes.
- You are permitted to use a scientific or graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.

INFORMATION FOR CANDIDATES

This information is the same on the Printed Answer Book and the Question Paper.

- The number of marks is given in brackets [] at the end of each question or part question on the Question Paper.
- You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.
- The total number of marks for this paper is 72 .
- The Printed Answer Book consists of 12 pages. The Question Paper consists of 8 pages. Any blank pages are indicated.

INSTRUCTION TO EXAMS OFFICER/INVIGILATOR

- Do not send this Question Paper for marking; it should be retained in the centre or recycled. Please contact OCR Copyright should you wish to re-use this document.

Section A (36 marks)

1 Find $\int 30 x^{\frac{3}{2}} \mathrm{~d} x$.

2 For each of the following sequences, state with a reason whether it is convergent, periodic or neither. Each sequence continues in the pattern established by the given terms.
(i) $3, \frac{3}{2}, \frac{3}{4}, \frac{3}{8}, \ldots$
(ii) $3,7,11,15, \ldots$
(iii) $3,5,-3,-5,3,5,-3,-5, \ldots$

3 (i) The point $\mathrm{P}(4,-2)$ lies on the curve $y=\mathrm{f}(x)$. Find the coordinates of the image of P when the curve is transformed to $y=\mathrm{f}(5 x)$.
(ii) Describe fully a single transformation which maps the curve $y=\sin x^{\circ}$ onto the curve $y=\sin (x-90)^{\circ}$.

Fig. 4

Fig. 4 shows sector OAB with sector angle 1.2 radians and arc length 4.2 cm . It also shows chord AB .
(i) Find the radius of this sector.
(ii) Calculate the perpendicular distance of the chord AB from O .
$5 \quad \mathrm{~A}$ and B are points on the curve $y=4 \sqrt{x}$. Point A has coordinates $(9,12)$ and point B has x-coordinate 9.5. Find the gradient of the chord $A B$.

The gradient of AB is an approximation to the gradient of the curve at A . State the x-coordinate of a point C on the curve such that the gradient of AC is a closer approximation.

6 Differentiate $2 x^{3}+9 x^{2}-24 x$. Hence find the set of values of x for which the function $\mathrm{f}(x)=2 x^{3}+9 x^{2}-24 x$ is increasing.

7 Fig. 7 shows a sketch of a village green $A B C$ which is bounded by three straight roads. $A B=92 \mathrm{~m}$, $\mathrm{BC}=75 \mathrm{~m}$ and $\mathrm{AC}=105 \mathrm{~m}$.

Fig. 7
Calculate the area of the village green.

8 (i) Sketch the graph of $y=3^{x}$.
(ii) Solve the equation $3^{5 x-1}=500000$.

9 (i) Show that the equation $\frac{\tan \theta}{\cos \theta}=1$ may be rewritten as $\sin \theta=1-\sin ^{2} \theta$.
(ii) Hence solve the equation $\frac{\tan \theta}{\cos \theta}=1$ for $0^{\circ} \leqslant \theta \leqslant 360^{\circ}$.

Section B (36 marks)

10 Fig. 10 shows a sketch of the curve $y=x^{2}-4 x+3$. The point A on the curve has x-coordinate 4. At point B the curve crosses the x-axis.

Fig. 10
(i) Use calculus to find the equation of the normal to the curve at A and show that this normal intersects the x-axis at $\mathrm{C}(16,0)$.
(ii) Find the area of the region ABC bounded by the curve, the normal at A and the x-axis.

11 (i) An arithmetic progression has first term A and common difference D. The sum of its first two terms is 25 and the sum of its first four terms is 250 .
(A) Find the values of A and D.
(B) Find the sum of the 21 st to 50 th terms inclusive of this sequence.
(ii) A geometric progression has first term a and common ratio r, with $r \neq \pm 1$. The sum of its first two terms is 25 and the sum of its first four terms is 250 .
Use the formula for the sum of a geometric progression to show that $\frac{r^{4}-1}{r^{2}-1}=10$ and hence or otherwise find algebraically the possible values of r and the corresponding values of a.

12 The table shows population data for a country.

Year	1969	1979	1989	1999	2009
Population in millions (p)	58.81	80.35	105.27	134.79	169.71

The data may be represented by an exponential model of growth. Using t as the number of years after 1960, a suitable model is $p=a \times 10^{k t}$.
(i) Derive an equation for $\log _{10} p$ in terms of a, k and t.
(ii) Complete the table and draw the graph of $\log _{10} p$ against t, drawing a line of best fit by eye.
(iii) Use your line of best fit to express $\log _{10} p$ in terms of t and hence find p in terms of t.
(iv) According to the model, what was the population in 1960?
(v) According to the model, when will the population reach 200 million?

