Mark Scheme 4752 June 2006

Section A

| $\mathbf{1}$ | 1,3 | 1,1 | | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{2}$ | $r=0.2$ | 3 | M1 for $10=8 /(1-r)$ then
 M1 dep't for any correct step | 3 |
| $\mathbf{3}$ | $1 / \sqrt{ } 15$ i.s.w. not $+/-$ | 3 | M2 for $\sqrt{ } 15$ seen
 M1 for rt angled triangle with side 1 and
 hyp 4, or cos ${ }^{2} \theta=1-1 / 4^{2}$. | 3 |

Section B

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 10 \& \begin{tabular}{l}
i \\
(A) \\
i \\
(B) \\
ii
\end{tabular} \& \[
\begin{aligned}
\& 5.2^{2}+6.3^{2}-2 \times 5.2 \times 6.3 \times \cos \text { " } 57^{\prime \prime} \\
\& \mathrm{ST}=5.6 \text { or } 5.57 \text { cao } \\
\& \sin \mathrm{T} / 5.2=\sin (\text { their } 57) / \text { /their } \mathrm{ST} \\
\& \mathrm{~T}=51 \text { to } 52 \text { or } \mathrm{S}=71 \text { to } 72 \\
\& \text { bearing } 285+\text { their } \mathrm{T} \\
\& \text { or } 408-\text { their } \mathrm{S} \\
\& \\
\& 5.2 \theta, 24 \times 26 / 60 \\
\& \theta=1.98 \text { to } 2.02 \\
\& \theta=\text { their } 2 \times 180 / \pi \text { or } 114.6^{\circ} \ldots \\
\& \text { Bearing }=293 \text { to } 294 \text { cao }
\end{aligned}
\] \& \begin{tabular}{l}
M2 \\
A1 \\
M1 \\
A1 \\
B1 \\
B1B1 \\
B1 \\
M1 \\
A1
\end{tabular} \& \begin{tabular}{l}
M1 for recognisable attempt at cos rule. or greater accuracy \\
Or \(\sin \mathrm{S} / 6.3=\ldots\) or cosine rule \\
If outside 0 to 360 , must be adjusted \\
Lost for all working in degrees Implied by 57.3
\end{tabular} \& 3
3
3
5 \& 11 \\
\hline 11 \& ii \& \begin{tabular}{l}
\[
\begin{aligned}
\& \hline y^{\prime}=3 x^{2}-6 x \\
\& \text { use of } y^{\prime}=0 \\
\& (0,1) \text { or }(2,-3)
\end{aligned}
\] \\
sign of \(y^{\prime \prime}\) used to test or \(y^{\prime}\) either side
\[
\begin{aligned}
\& y^{\prime}(-1)=3+6=9 \\
\& 3 x^{2}-6 x=9 \\
\& x=3
\end{aligned}
\] \\
At Py=1 \\
grad normal \(=-1 / 9\) cao
\[
y-1=-1 / 9(x-3)
\] \\
intercepts 12 and 4/3or use of
\[
\begin{aligned}
\& \int_{0}^{12} 4 / 3-1 / 9 x \mathrm{~d} x \text { (their normal) } \\
\& 1 / 2 \times 12 \times 4 / 3 \text { cao }
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
B1 \\
M1 \\
A2 \\
T1 \\
B1 \\
M1 \\
A1 \\
B1 \\
B1 \\
M1 \\
B1 \\
A1
\end{tabular} \& \begin{tabular}{l}
condone one error \\
A1 for one correct or \(x=0,2\) SC B1 for \((0,1)\) from their \(y^{\prime}\) Dep't on M1 or \(y\) either side or clear cubic sketch \\
ft for their \(y^{\prime}\) implies the M1 \\
ft their \((3,1)\) and their grad, not 9 ft their normal (linear)
\end{tabular} \& 5 \& 13 \\
\hline 12 \& \begin{tabular}{l}
ii \\
iii \\
iv
\end{tabular} \& \[
\begin{aligned}
\& \log _{10} P=\log _{10} a+\log _{10} 10^{b t} \\
\& \log _{10} 10^{b t}=b t \\
\& \text { intercept indicated as } \log _{10} a \\
\& \\
\& 3.9(0), 3.94,4(.00), 4.05,4.11 \\
\& \text { plots ft } \\
\& \text { line of best fit } \mathrm{ft} \\
\& \text { (gradient }=) 0.04 \text { to } 0.06 \text { seen } \\
\& \text { (intercept }=) 3.83 \text { to } 3.86 \text { seen } \\
\& (a=) 6760 \text { to } 7245 \text { seen } \\
\& P=7000 \times 10^{0.05 t} \text { oe } \\
\& \\
\& 17000 \text { to } 18500
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathrm{B} 1 \\
\& \mathrm{~B} 1 \\
\& \mathrm{~B} 1 \\
\& \\
\& \mathrm{~T} 1 \\
\& \mathrm{P} 1 \\
\& \mathrm{~L} 1 \\
\& \\
\& \mathrm{M} 1 \\
\& \mathrm{M} 1 \\
\& \mathrm{~A} 1 \\
\& \mathrm{~A} 1 \\
\& \\
\& \mathrm{~B} 2
\end{aligned}
\] \& \begin{tabular}{l}
condone omission of base \\
to 3 sf or more; condone one error 1 mm ruled and reasonable
\[
\begin{aligned}
\& 7000 \times 1.12^{t} \\
\& \text { SC P }=10^{0.05 t+3.85} \text { left A2 } \\
\& 14000 \text { to } 22000 \text { B1 }
\end{aligned}
\]
\end{tabular} \& 3
3

4
4 \& 12 \\
\hline
\end{tabular}

