Mark Scheme 4752 June 2007

1	(i) $-\sqrt{3}$ (ii) $\frac{5}{3} \pi$	1 2	Accept any exact form accept $\frac{5 \pi}{3}, 12 / 3 \pi$. M1 $\pi \mathrm{rad}=180^{\circ}$ used correctly	3
2	$\begin{aligned} & y^{\prime}=6 \times \frac{3}{2} x^{\frac{1}{2}} \text { or } 9 x^{\frac{1}{2}} \text { o.e. } \\ & y^{\prime \prime}=\frac{9}{2} x^{-\frac{1}{2}} \text { o.e. } \\ & \sqrt{36}=6 \text { used } \\ & \text { interim step to obtain } \frac{3}{4} \end{aligned}$	2 1 M1 A1	1 if one error in coeff or power, or extra term f.t. their y^{\prime} only if fractional power f.t. their $y^{\prime \prime}$ www answer given	5
3	(i) $y=2 \mathrm{f}(x)$ (ii) $y=\mathrm{f}(x-3)$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { 1 if ' } y=\text { ' omitted [penalise only once] } \\ & \text { M1 for } \mathrm{y}=\mathrm{kf}(\mathrm{x}), \mathrm{k}>0 \\ & \text { M1 for } y=\mathrm{f}(x+3) \text { or } \mathrm{y}=\mathrm{f}(\mathrm{x}-\mathrm{k}) \end{aligned}$	4
4	(i) 11 27 or ft from their 11 (ii) 20	$\begin{array}{\|l\|} \hline 1 \\ 1 \\ 2 \end{array}$	M1 for $1 \times 2+2 \times 3+3 \times 4$ soi, or $2,6,12$ identified, or for substituting $n=3$ in standard formulae	4
5	$\begin{aligned} & \theta=0.72 \text { o.e } \\ & 13.6[\mathrm{~cm}] \end{aligned}$	$\begin{array}{\|l\|} \hline 2 \\ 3 \end{array}$	M1 for $9=1 / 2 \times 25 \times \theta$ No marks for using degrees unless attempt to convert B2 ft for $10+5 \times$ their θ or for 3.6 found or M1 for $s=5 \theta$ soi	5
6	(i) $\log _{a} 1=0, \log _{a} a=1$ (ii) showing both sides equivalent	$\begin{array}{\|l\|} \hline 1+1 \\ 3 \end{array}$	NB, if not identified, accept only in this order M1 for correct use of $3^{\text {rd }}$ law and M1 for correct use of $1^{\text {st }}$ or $2^{\text {nd }}$ law. Completion www A1. Condone omission of a.	5
7	(i) curve with increasing gradient any curve through $(0,1)$ marked (ii) 2.73	$\begin{aligned} & \mathrm{G} 1 \\ & \mathrm{G} 1 \\ & 3 \end{aligned}$	correct shape in both quadrants M1 for $x \log 3=\log 20\left(\right.$ or $\left.x=\log _{3} 20\right)$ and M1 for $x=\log 20 \div \log 3$ or B2 for other versions of 2.726833.. or B1 for other answer 2.7 to 2.8	5
8	(i) $2\left(1-\sin ^{2} \theta\right)+7 \sin \theta=5$ (ii) $(2 \sin \theta-1)(\sin \theta-3)$ $\sin \theta=1 / 2$ 30° and 150°	$\begin{array}{\|l\|} \hline 1 \\ \text { M1 } \\ \text { DM1 } \\ \text { A1 } \\ \text { A1 } \\ \hline \end{array}$	for $\cos ^{2} \theta+\sin ^{2} \theta=1$ o.e. used $1^{\text {st }}$ and $3^{\text {rd }}$ terms in expansion correct f.t. factors B1,B1 for each solution obtained by any valid method, ignore extra solns outside range, $30^{\circ}, 150^{\circ}$ plus extra soln(s) scores 1	5

\begin{tabular}{|c|c|c|c|c|c|}
\hline 9 \& ii \& \begin{tabular}{l}
\[
\begin{aligned}
\& y^{\prime}=6 x^{2}-18 x+12 \\
\& =12 \\
\& y=7 \text { when } x=3
\end{aligned}
\] \\
tgt is \(y-7=12(x-3)\) verifying \((-1,-41)\) on tgt
\[
y^{\prime}=0 \text { soi }
\] \\
quadratic with 3 terms
\[
\begin{aligned}
\& x=1 \text { or } 2 \\
\& y=3 \text { or } 2
\end{aligned}
\] \\
cubic curve correct orientation touching x - axis only at (\(0.2,0\)) max and min correct curve crossing \(y\) axis only at -2
\end{tabular} \& \[
\begin{array}{|l}
\hline \text { M1 } \\
\text { M1 } \\
\text { B1 } \\
\text { M1 } \\
\text { A1 } \\
\text { M1 } \\
\text { M1 } \\
\text { A1 } \\
\text { A1 } \\
\text { G1 } \\
\\
\text { G1 }
\end{array}
\] \& \begin{tabular}{l}
condone one error \\
subst of \(x=3\) in their \(y^{\prime}\) \\
f.t. their \(y\) and \(y^{\prime}\) or B2 for showing line joining \((3,7)\) and \((-1,-41)\) has gradient 12 \\
Their \(y^{\prime}\) \\
Any valid attempt at solution or A1 for \((1,3)\) and A1 for \((2,2)\) marking to benefit of candidate \\
f.t.
\end{tabular} \& 4 \\
\hline 10 \& ii
iii

iv \& \begin{tabular}{l}
$$
970 \text { [m] }
$$

concave curve or line of traps is above curve
$$
(19+14+11+11+12+16) \times 10
$$

830 to 880 incl.[m]
$$
t=10, v_{\text {model }}=19.5
$$

difference $=0.5$ compared with 3% of $19=0.57$

$28 t-1 / 2 t^{2}+0.005 t^{3}$ o.e.

value at 60 [- value at 0]

960

 \&

4

1

M1

A1

B1

B1f.t.

M1

M1

A1

 \&

M3 for attempt at trap rule $1 / 2 \times 10 \times(28+22+2[19+14+11+12+16])$ M2 with 1 error, M1 with 2 errors. Or M3 for 6 correct trapezia, M2 for 4 correct trapezia, M1 for 2 correct trapezia.

Accept suitable sketch

M1 for 3 or more rectangles with values from curve.

or $\frac{0.5}{19} \times 100 \approx 2.6$

2 terms correct, ignore +c

ft from integrated attempt with 3 terms
\end{tabular} \& 4

3

2
3

\hline 11 \& ai
aii
bi
ii

ii \& $$
\begin{aligned}
& 13 \\
& 120 \\
& \frac{125}{1296} \\
& a=1 / 6, r=5 / 6 \text { s.o.i. } \\
& S_{\infty}=\frac{\frac{1}{6}}{1-\frac{5}{6}} \text { o.e. } \\
& \quad\left(\frac{5}{6}\right)^{n-1}<0.006 \\
& (n-1) \log _{10}\left(\frac{5}{6}\right)<\log _{10} 0.006 \\
& \quad n-1>\frac{\log _{10} 0.006}{\log _{10}\left(\frac{5}{6}\right)} \\
& \quad n_{\min }=30
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 1 \\
& 2 \\
& 2 \\
& 1+1 \\
& 1 \\
& \text { M1 } \\
& \text { M1 } \\
& \text { DM1 } \\
& \text { B1 } \\
& \text { M1 } \\
& \text { M1 }
\end{aligned}
$$

\] \& | M1 for attempt at AP formula ft their a, d or for $3+5+\ldots+21$ |
| :--- |
| M1 for $\frac{1}{6} \times\left(\frac{5}{6}\right)^{3}$ |
| If not specified, must be in right order |
| condone omission of base, but not brackets |
| NB change of sign must come at correct place | \& 2

2
3
3
4

\hline
\end{tabular}

