ADVANCED SUBSIDIARY GCE UNIT

Concepts for Advanced Mathematics (C2)

THURSDAY 7 JUNE 2007

Additional materials:
Answer booklet (8 pages)
Graph paper
MEI Examination Formulae and Tables (MF2)

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- You are permitted to use a graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- \quad The total number of marks for this paper is 72.

ADVICE TO CANDIDATES

- Read each question carefully and make sure you know what you have to do before starting your answer.
- You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.
This document consists of 6 printed pages and 2 blank pages.
HN/3 © OCR $2007[\mathrm{~K} / 100 / 2648] \quad$ OCR is an exempt Charity
[Turn over

Section A (36 marks)

1 (i) State the exact value of $\tan 300^{\circ}$.
(ii) Express 300° in radians, giving your answer in the form $k \pi$, where k is a fraction in its lowest terms.

2 Given that $y=6 x^{\frac{3}{2}}$, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$.
Show, without using a calculator, that when $x=36$ the value of $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ is $\frac{3}{4}$.

3

Fig. 3
Fig. 3 shows sketches of three graphs, A, B and C. The equation of graph A is $y=\mathrm{f}(x)$.
State the equation of
(i) graph B ,
(ii) graph C .

4 (i) Find the second and third terms of the sequence defined by the following.

$$
\begin{align*}
t_{n+1} & =2 t_{n}+5 \\
t_{1} & =3 \tag{2}
\end{align*}
$$

(ii) Find $\sum_{k=1}^{3} k(k+1)$.

5 A sector of a circle of radius 5 cm has area $9 \mathrm{~cm}^{2}$.
Find, in radians, the angle of the sector.
Find also the perimeter of the sector.

6 (i) Write down the values of $\log _{a} 1$ and $\log _{a} a$, where $a>1$.
(ii) Show that $\log _{a} x^{10}-2 \log _{a}\left(\frac{x^{3}}{4}\right)=4 \log _{a}(2 x)$.

7 (i) Sketch the graph of $y=3^{x}$.
(ii) Use logarithms to solve the equation $3^{x}=20$. Give your answer correct to 2 decimal places.

8 (i) Show that the equation $2 \cos ^{2} \theta+7 \sin \theta=5$ may be written in the form

$$
\begin{equation*}
2 \sin ^{2} \theta-7 \sin \theta+3=0 \tag{1}
\end{equation*}
$$

(ii) By factorising this quadratic equation, solve the equation for values of θ between 0° and 180°.

Section B (36 marks)

9 The equation of a cubic curve is $y=2 x^{3}-9 x^{2}+12 x-2$.
(i) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and show that the tangent to the curve when $x=3$ passes through the point $(-1,-41)$.
(ii) Use calculus to find the coordinates of the turning points of the curve. You need not distinguish between the maximum and minimum.
(iii) Sketch the curve, given that the only real root of $2 x^{3}-9 x^{2}+12 x-2=0$ is $x=0.2$ correct to 1 decimal place.

10 Fig. 10 shows the speed of a car, in metres per second, during one minute, measured at 10 -second intervals.

Fig. 10
The measured speeds are shown below.

Time $(t$ seconds $)$	0	10	20	30	40	50	60
Speed $\left(v \mathrm{~m} \mathrm{~s}^{-1}\right)$	28	19	14	11	12	16	22

(i) Use the trapezium rule with 6 strips to find an estimate of the area of the region bounded by the curve, the line $t=60$ and the axes. [This area represents the distance travelled by the car.]
(ii) Explain why your calculation in part (i) gives an overestimate for this area. Use appropriate rectangles to calculate an underestimate for this area.

The speed of the car may be modelled by $v=28-t+0.015 t^{2}$.
(iii) Show that the difference between the value given by the model when $t=10$ and the measured value is less than 3% of the measured value.
(iv) According to this model, the distance travelled by the car is

$$
\int_{0}^{60}\left(28-t+0.015 t^{2}\right) \mathrm{d} t
$$

Find this distance.

11 (a) André is playing a game where he makes piles of counters. He puts 3 counters in the first pile. Each successive pile he makes has 2 more counters in it than the previous one.
(i) How many counters are there in his sixth pile?
(ii) André makes ten piles of counters. How many counters has he used altogether?
(b) In another game, played with an ordinary fair die and counters, Betty needs to throw a six to start.

The probability P_{n} of Betty starting on her nth throw is given by

$$
\begin{equation*}
P_{n}=\frac{1}{6} \times\left(\frac{5}{6}\right)^{n-1} \tag{2}
\end{equation*}
$$

(i) Calculate P_{4}. Give your answer as a fraction.
(ii) The values $\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}, \ldots$ form an infinite geometric progression. State the first term and the common ratio of this progression.

Hence show that $\mathrm{P}_{1}+\mathrm{P}_{2}+\mathrm{P}_{3}+\ldots=1$.
(iii) Given that $\mathrm{P}_{n}<0.001$, show that n satisfies the inequality

$$
\begin{equation*}
n>\frac{\log _{10} 0.006}{\log _{10}\left(\frac{5}{6}\right)}+1 \tag{4}
\end{equation*}
$$

Hence find the least value of n for which $\mathrm{P}_{n}<0.001$.

