4752 (C2) Concepts for Advanced Mathematics

Section A

1	210 c.a.o.	2	1 for m rads $=180^{\circ} \mathrm{soi}$	2
2	(i) $5.4 \times 10^{-3}, 0.0054$ or $\frac{27}{5000}$ (ii) 6 www	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	M 1 for $\mathrm{S}=5.4 /(1-0.1)$	3
3	stretch, parallel to the y axis, sf 3	2	1 for stretch plus one other element correct	2
4	$\begin{aligned} & {\left[f^{\prime}(x)=\right] 12-3 x^{2}} \\ & \text { their } \mathrm{f}^{\prime}(x)>0 \text { or }=0 \text { soi } \\ & -2<x<2 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ \hline \end{array}$	condone $-2 \leq x \leq 2$ or "between -2 and 2"	3
5	$\begin{aligned} & \text { (i) grad of chord }=\left(2^{3.1}-2^{3}\right) / 0.1 \\ & \text { o.e. } \\ & =5.74 \text { c.a.o. } \end{aligned}$ (ii) correct use of A and C where for C, $2.9<x<3.1$ answer in range $(5.36,5.74)$	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \end{array}$	or chord with ends $x=3 \pm h$, where $0<h \leq 0.1$ s.c. 1 for consistent use of reciprocal of gradient formula in parts (i) and (ii)	4
6	$\begin{aligned} & {[y=] \mathrm{kx} x^{3 / 2}[+c]} \\ & \mathrm{k}=4 \end{aligned}$ subst of $(9,105)$ in their eqn with c or $c=-3$	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ \hline \end{array}$	may appear at any stage must have c; must have attempted integration	4
7	```sector area =28.8 or }\frac{144}{5}[\mp@subsup{\textrm{cm}}{}{2} c.a.o. area of triangle = 1/2 \times 6 }\times\mathrm{ 人 sin 1.6 o.e. their sector - their triangle s.o.i. 10.8 to 10.81 [cm}\mp@subsup{}{}{2}```	$\begin{array}{\|l\|} \hline 2 \\ \mathrm{M} 1 \\ \mathrm{M} 1 \\ \mathrm{~A} 1 \\ \hline \end{array}$	M1 for $1 / 2 \times 6^{2} \times 1.6$ must both be areas leading to a positive answer	5
8	$\begin{aligned} & \hline a+10 d=1 \text { or } 121=5.5(2 a+10 d) \\ & 5(2 a+9 d)=120 \text { o.e. } \\ & a=21 \text { s.o.i. www } \\ & \text { and } d=-2 \text { s.o.i. www } \\ & \text { 4th term is } 15 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{M} 1 \\ \mathrm{M} 1 \\ \mathrm{~A} 1 \\ \mathrm{~A} 1 \\ \mathrm{~A} 1 \\ \hline \end{array}$	or $121=5.5(a+1)$ gets M2 eg $2 a+9 d=24$	5
9	$\begin{aligned} & x \log 5=\log 235 \text { or } x=\frac{\log 235}{\log 5} \\ & 3.39 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A2 } \end{aligned}$	or $x=\log _{5} 235$ A1 for 3.4 or versions of $3.392 \ldots$	3
10	$\begin{aligned} & 2\left(1-\cos ^{2} \theta\right)=\cos \theta+2 \\ & -2 \cos ^{2} \theta=\cos \theta \text { s.o.i. } \end{aligned}$ valid attempt at solving their quadratic in $\cos \theta$ $\cos \theta=-1 / 2 \mathrm{www}$ $\theta=90,270,120,240$	M1 A1 DM1 A1 A1	for $1-\cos ^{2} \theta=\sin ^{2} \theta$ substituted graphic calc method: allow M3 for intersection of $y=2 \sin ^{2} \theta$ and $y=\cos$ $\theta+2$ and A2 for all four roots. All four answers correct but unsupported scores B2. 120 and 240 only: B1.	5

Section B

\begin{tabular}{|c|c|c|c|c|c|}
\hline 11 \& i
ii

iii

iv \& \[
$$
\begin{aligned}
& (x+5)(x-2)(x+2) \\
& {[(x+2)]\left(x^{2}+3 x-10\right)} \\
& x^{3}+3 x^{2}-10 x+2 x^{2}+6 x-20 \\
& \text { o.e. } \\
& \\
& y^{\prime}=3 x^{2}+10 x-4 \\
& \text { their } 3 x^{2}+10 x-4=0 \text { s.o.i. } \\
& x=0.36 \ldots \text { from formula o.e. } \\
& (-3.7,12.6) \\
& (-1.8,12.6)
\end{aligned}
$$

\] \& | 2 |
| :--- |
| M1 |
| M1 |
| M2 |
| M1 |
| A1 |
| B1+1 |
| B1+1 | \& | M1 for $a(x+5)(x-2)(x+2)$ |
| :--- |
| for correct expansion of one pair of their brackets for clear expansion of correct factors - accept given answer from $(x+5)\left(x^{2}-4\right)$ as first step |
| M1 if one error or M1 for substitution of 0.4 if trying to obtain 0, and A1 for correct demonstration of sign change |
| accept ($-1.9,12.6$) or f.t. $(1 / 2$ their $\max x$, their $\max y$) | \& 2

2

6
2

\hline 12 \& ii \& | Area $=(-) 0.136$ seen $\left[\mathrm{m}^{2}\right]$ www |
| :--- |
| Volume $=0.34\left[\mathrm{~m}^{3}\right]$ or ft from their area $\times 2.5$ $2 x^{4}-x^{3}-0.25 x^{2}-0.15 x \text { o.e. }$ |
| value at 0.5 [- value at 0] $=-0.1375$ |
| area of cross section (of trough) or area between curve and x-axis 0.34375 r.o.t. to 3 or more sf $\left[\mathrm{m}^{3}\right]$ m^{3} seen in (i) or (ii) | \& | 4 |
| :--- |
| 1 |
| M2 |
| M1 |
| A1 |
| E1 |
| B1 |
| U1 | \& | M3 for 0.1/2 $\times(0.14+0.16+2[0.22$ $+0.31+0.36+0.32])$ M2 for one slip; M1 for two slips must be positive |
| :--- |
| M1 for 2 terms correct dep on integral attempted must have neg sign | \& 5

7

\hline 13 \& ii

iii

iv \& | $\log P=\log a+b \log t \quad w w w$ comparison with $y=m x+c$ intercept $=\log _{10} a$ $\begin{array}{\|lllll} \log t & 0 & 0.78 & 1.15 & 1.18 \\ 1.20 & & & & \\ \log P & 1.49 & 1.64 & 1.75 & 1.74 \\ 1.76 & & & & \\ \hline \end{array}$ plots f.t. |
| :--- |
| ruled line of best fit gradient rounding to 0.22 or $\begin{gathered} 0.23 \\ \mathrm{a}=10^{1.49} \\ \mathrm{P}=31 \mathrm{t}^{\mathrm{m}} \end{gathered} \text { s.o.i. }$ |
| allow the form $P=10^{0.22 \text { logt }}$ $\begin{aligned} & +1.49 \end{aligned}$ |
| answer rounds in range 60 to 63 | \& \[

$$
\begin{aligned}
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& \\
& 2 \\
& 1 \\
& 1
\end{aligned}
$$

\] \& | must be with correct equation condone omission of base |
| :--- |
| accept to 2 or more dp |
| M1 for y step / x-step accept1.47-1.50 for intercept accept answers that round to 30 32 , their positive m | \& 3

4
4

4
1

\hline
\end{tabular}

