4752 (C2) Concepts for Advanced Mathematics

Section A

1	using Pythagoras to show that hyp. of right angled isos. triangle with sides a and a is $\sqrt{ } 2 a$ completion using definition of cosine	M1 A1	www a any letter or a number NB answer given	2
2	$\begin{aligned} & 2 x^{6}+5 x \\ & \text { value at } 2-\text { value at } 1 \\ & 131 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { M2 } \\ \text { M1 } \\ \text { A1 } \end{array}$	M1 if one error ft attempt at integration only	4
3	(i) 193 (ii) divergent + difference between terms increasing o.e.	2 1	M1 for $8+15+\ldots+63$	3
4	(i) 2.4 (ii) 138	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	M1 for $43.2 \div 18$ M1 for their (i) $\times \frac{\frac{280}{\pi}}{}$ or $\theta=\frac{43.2 \times 350}{36 \pi}$ o.e. or for other rot versions of 137.50...	4
5	(i)sketch of $\cos x$; one cycle, sketch of cos $2 x$; two cycles, Both axes scaled correctly (ii) (1-way) stretch parallel to y axis sf 3	$\begin{array}{\|l\|} \hline 1 \\ 1 \\ \mathrm{D} 1 \\ 1 \\ 1 \\ \mathrm{D} 1 \end{array}$		5
6	$\begin{aligned} & y^{\prime}=3 x^{2}-12 x-15 \\ & \text { use of } y^{\prime}=0 \text {, s.o.i. } \mathrm{ft} \\ & x=5,-1 \text { c.a.o. } \\ & x<-1 \text { or } x>5 \text { f.t. } \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{M} 1 \\ \mathrm{M} 1 \\ \mathrm{~A} 1 \\ \mathrm{~A} 1 \\ \mathrm{~A} 1 \\ \hline \end{array}$	for two terms correct	5
7	use of $\cos ^{2} \theta=1-\sin ^{2} \theta$ at least one correct interim step in obtaining $4 \sin ^{2} \theta-\sin \theta=0$. $\begin{aligned} & \theta=0 \text { and } 180, \\ & 14 .(47 \ldots) \\ & 165-166 \end{aligned}$	M1 M1 B1 B1 B1	NB answer given r.o.t to nearest degree or better -1 for extras in range	5

8	attempt to integrate $3 \sqrt{x}-5$ $[y=] 2 x^{\frac{3}{2}}-5 x+c$ subst of $(4,6)$ in their integrated eqn $c=10 \text { or }[y=] 2 x^{\frac{3}{2}}-5 x+10$	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { A2 } \\ \text { M1 } \\ \text { A1 } \end{array}$	A1 for two terms correct	5
9	(i) 7 (ii) 5.5 o.e.	1 2	M1 for at least one of $5 \log _{10} a$ or $1 / 2 \log _{10} a$ or $\log _{10} a^{5.5}$ o.e.	3

\begin{tabular}{|c|c|c|c|c|c|}
\hline 11 \& iA iB iiA iiB iiC \& \begin{tabular}{l}
\[
10+20+30+40+50+60
\] \\
correct use of AP formula with \(a=10\) and \(d=10\) \\
\(n(5+5 n)\) or \(5 n(n+1)\) or \(5\left(n^{2}+n\right)\) or \(\left(5 n^{2}+5 n\right)\)
\[
10 n^{2}+10 n-20700=0
\] \\
45 c.a.o. \\
4 \\
£2555 \\
correct use of GP formula with \(a=5, r=2\)
\[
5\left(2^{n}-1\right) \text { o.e. }=2621435
\]
\[
2^{n}=524288 w w w
\] \\
19 c.a.o.
\end{tabular} \& \begin{tabular}{l}
B1 \\
M1 \\
A1 \\
M1 \\
A1 \\
1 \\
2 \\
M1 \\
DM1 \\
M1 \\
A1
\end{tabular} \& \begin{tabular}{l}
or \(\frac{6}{2}(2 \times 10+5 \times 10)\) or \(\frac{6}{2}(10+60)\) \\
Or better \\
M1 for \(5\left(1+2+\ldots 2^{8}\right)\) or \(5\left(2^{9}-1\right)\) o.e. \\
"S" need not be simplified
\end{tabular} \& 1

4
1
1
2

4

\hline 12 \& ii

iii
iv

v \& \begin{tabular}{l}
6.1
$$
\frac{\left((3+h)^{2}-7\right)-\left(3^{2}-7\right)}{h} \begin{aligned}
& \text { numerator }=6 h+h^{2} \\
& 6+h
\end{aligned}
$$

as h tends to 0 , grad. tends to 6 o.e. f.t.from " 6 " +h
$$
\begin{aligned}
& y-2=" 6 "(x-3) \text { o.e. } \\
& y=6 x-16
\end{aligned}
$$

At $\mathrm{P}, x=16 / 6$ o.e. or ft

At $\mathrm{Q}, x=\sqrt{7}$

0.021 cao

 \&

M1

M1

A1

M1

A1

M1

A1

M1

M1

A1

 \&

M1 for $\frac{\left(3.1^{2}-7\right)-\left(3^{2}-7\right)}{3.1-3}$ o.e. s.o.i.

6 may be obtained from $\frac{\lambda y}{\partial x}$
\end{tabular} \& 2

3
2
2
2
3

\hline
\end{tabular}

