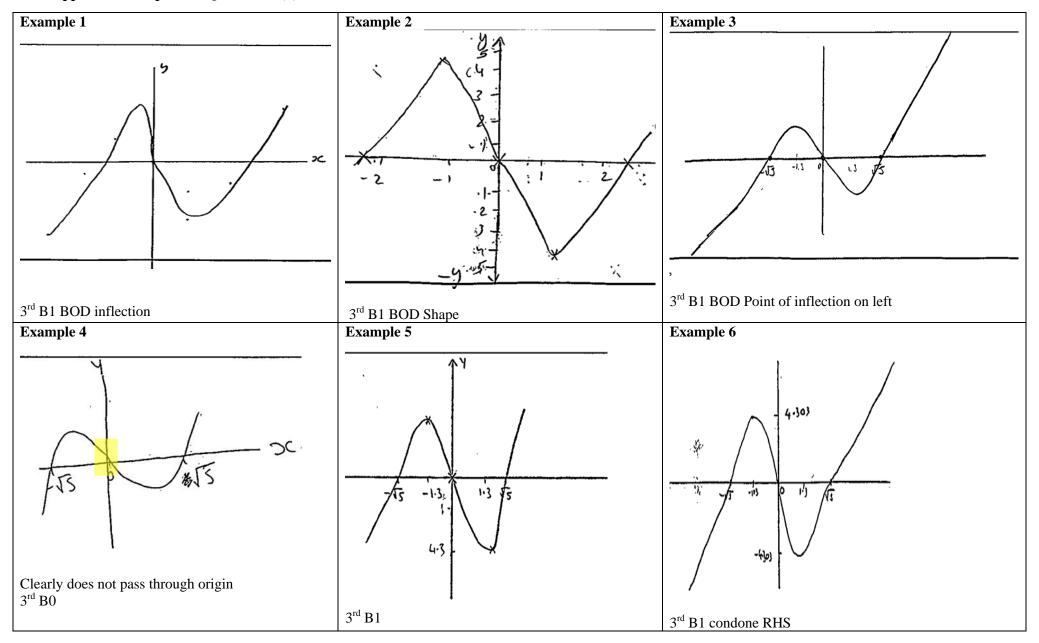
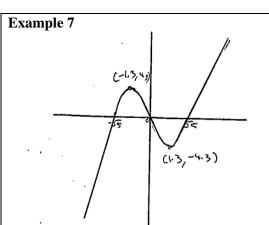
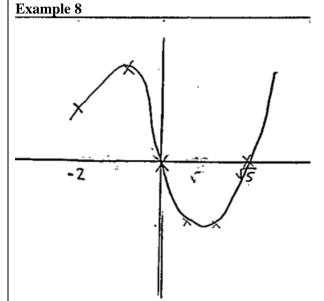
Question		Answer	Marks	Guidance		
1		$\frac{1}{2}x^{-\frac{1}{2}} - 3x^{-2}$ oe; isw	В3	need not be simplified B2 for one term correct	if B0 allow M1 for either $x^{1/2}$ or x^{-1} seen before differentiation	
			F21	ignore $+ c$	deduct one mark for extra term in x	
2		(5) 0 11 (14) :	[3] B1			
2		(5), 8, 11, (14) ,isw $a = 5$ and $d = 3$ soi	B1			
			D1			
		$S_{50} = \frac{50}{2}(2 \times 5 + (50 - 1) \times 3)$ oe	M1		if M0, award B2 if 3925 is obtained	
				if M0, SC1 for use of $a = 8$ and obtaining	from summing individual terms or if	
		3925	A1	4075	unsupported	
3	(2)	$9.8^2 + 6.4^2 - 2 \times 9.8 \times 6.4 \times \cos 53.4$	[4] M1			
3	(i)		M1 M1	for evidence of comment order of exerctions	6.90 implies M0	
		$9.8^2 + 6.4^2 - 74.79$ [= 62.2]	MII	for evidence of correct order of operations used; may be implied by correct answer	6.89 implies M0 262.4368 implies M1 (calc in radian mode), (NB √262.436=16.199)	
		7.887 or 7.89 or 7.9	A1 [3]	if M0, B3 for 7.89 or more precise www	NB 9.8sin53.4 = 7.87	
3	(ii)	$\frac{1}{2} \times 9.8 \times 7.3 \times \sin(180 - 53.4)$ oe seen	M1	or sin 53.4 used; may be embedded	may be split into height = $9.8 \times \sin 53.4$ then Area = $\frac{1}{2} \times 7.3 \times \text{height}$	
		28.716or 28.72 or 28.7 or 29 isw	A1 [2]	if M0, B2 for 28.7 or more precise www	and the property of the state o	
4	(i)	(6, 9)	2	1 for each co-ordinate	SC0 for (6, 3)	
7	(1)	(0, 9)	[2]	1 for each co-ordinate	Section (0, 3)	
4	(ii)	(1.5, 3)	2 [2]	1 for each co-ordinate	SC0 for (6, 3)	
5			L ² J	91 673		
		$45 = \frac{1}{2} r^2 \times 1.6$ oe	M1	$45 = \pi r^2 \times \frac{91.673}{360}$		
		$r^2 = 90/1.6$ oe	M1			
		r = 7.5 or exact equivalent cao	A1	or B3 www	allow recovery to 7.5 if working in degrees, but A0 for (eg) 7.49	
		(their 7.5) × 1.6	M1	$2\pi \times (\text{their } r) \times \frac{91.673}{360}$	12 implies M1	
		27	A1 [5]	or B2 www		

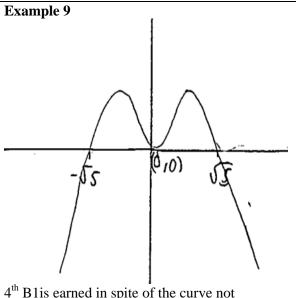

Question		Answer	Marks	Guidance		
6		gradient = 3 seen	B1	may be embedded		
		$\log_{10} y - 5 = \text{(their 3)(} \log_{10} x - 1\text{) or using}$ (5, 17)	M1	or $\log_{10} y = 3 \log_{10} x + c$ and substitution of (1, 5) or (5, 17) for $\log_{10} x$ and $\log_{10} y$	condone omission of base throughout NB may recover from eg $Y = 3X + 2$	
		$\log_{10} y = 3 \log_{10} x + 2 \text{ oe}$	A1		TVB may recover from eg $T = 3X + 2$	
		$y = 10^{3\log_{10} x + 2}$ oe	M1	or $\log_{10} y = \log_{10} x^3 + \log_{10} 100$	or $\log_{10} \frac{y}{x^3} = 2$ or $\log_{10} y = \log_{10} 100x^3$	
		$y = 100x^3$	A1			
			[5]			
7		$\frac{6x^{\frac{3}{2}}}{\frac{3}{2}}$	M1*			
		$4x^{\frac{3}{2}}$	A1	may appear later		
		-5x + c	B1	B0 if from $y = (6x^{\frac{1}{2}} - 5)x + c$	condone "+ c" not appearing until substitution	
		substitution of (4, 20)	M1dep*		Substitution	
		$[y =] 4x^{1.5} - 5x + 8 \text{ or } c = 8 \text{ isw}$	A1 [5]			
8		0.775397 soi	M1	or 44.427°		
		0.388, 1.18, 3.53, 4.32	A4	A1 each value	if any of final answers not given to three sf deduct 1 mark from total A marks	
		in degrees: 22.2, 67.8, 202, 248*		if A0 then B1 for at least two of 2.366,		
				7.058, 8.649for 2θ or all of 135.57, 404.427, 495.57	*if final answers in degrees deduct 1 from total A marks ignore extra values outside range	
					if four correct answers in degrees or radians, deduct 1 for extra values in range	
			[5]			


Q	Question		Answer	Marks	Guidance	
9	(i)		$\frac{1}{2} \times 0.2 (0 + 0 + 2(0.5 + 0.7 + 0.75 + 0.7 + 0.5))}{[=0.63]}$	M3	M2 if one error, M1 if two errors condone omission of zeros or M3 for 0.05 + 0.12 + 0.145 + 0.145 + 0.12 + 0.05 may be unsimplified, must be summed	basic shape of formula must be correct must be 6 strips M0 if brackets omitted, but allow recovery M0 if $h = 1$ or 1.2 Area = 6.3 and 0.53 imply M0
			(their 0.63) × 50 31.5	M1 A1 [5]		1,0
9	(ii)	(A)	$3.8 \times 0.2^4 - 6.8 \times 0.2^3 + 7.7 \times 0.2^2 - 4.2 \times 0.2$	M1	±0.58032 implies M1	condone one sign error
			0.01968 cao isw	A1 [2]	or B2 if unsupported	allow – 0.01968
9	(ii)	(B)	$\frac{3.8x^5}{5} - \frac{6.8x^4}{4} + \frac{7.7x^3}{3} - \frac{4.2x^2}{2} + c$	M2	M1 for two terms correct excluding c condone omission of c	accept 2.56 to 2.57 for coefficient of x^3 allow M1 if all signs reversed
			F(0.9) [- F(0)]	M1*	as long as at least M1 awarded	NB $F(0.9) = -0.496$
			$50 \times \text{their } \pm F(0.9)$ 24.8 to 24.9 cao	M1dep*		
			27.0 to 27.7 cao	[5]		

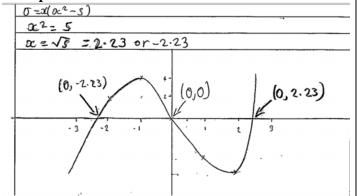
Question		on	Answer	Marks	Guidance		
10	(i)		$y' = 3x^2 - 5$	M1			
	(-)		their $y' = 0$	M1			
			(1.3, -4.3) cao	A1	or A1 for $x = \pm \sqrt{\frac{5}{3}}$ oe soi		
			(-1.3, 4.3) cao	A1	allow if not written as co-ordinates if pairing is clear	ignore any work relating to second derivative	
				[4]			
10	(ii)		crosses axes at (0, 0)	B1	condone x and y intercepts not written as	See examples in Appendix	
			and $(\pm\sqrt{5}, 0)$	B1	co-ordinates; may be on graph $\pm (2.23 \text{ to } 2.24) \text{ implies } \pm \sqrt{5}$		
			sketch of cubic with turning points in correct	B1		must meet the x-axis three times	
			quadrants and of correct orientation and passing through origin			B0 eg if more than 1 point of inflection	
			x-intercepts $\pm \sqrt{5}$ marked	B1	may be in decimal form (±2.2)		
- 10	(000)			[4]			
10	(iii)		substitution of $x = 1$ in $f'(x) = 3x^2 - 5$	M1		sight of -2 does not necessarily imply	
						M1: check $f'(x) = 3x^2 - 5$ is correct	
						in part (i)	
			-2	A1			
			$y 4 = (\text{their f }'(1)) \times (x - 1) \text{ oe}$	M1*	or $-4 = -2 \times (1) + c$		
			$-2x-2=x^3-5x$ and completion to given result www	M1dep*			
			use of Factor theorem in $x^3 - 3x + 2$ with -1 or ± 2	M1	or any other valid method; must be shown	eg long division or comparing coefficients to find $(x-1)(x^2+x-2)$ or	
			x = -2 obtained correctly	A1		$(x+2)(x^2-2 x + 1)$ is enough for M1 with both factors correct NB M0A0 for $x(x^2-3) = -2$ so $x = -2$	
			,	[6]		or $x^2 - 3 = -2$ oe	


Question		on	Answer	Marks	Guidance		
11	(i)		ar = 6 oe	B1	must be in a and r		
			$\frac{a}{1-r} = 25$ oe	B1	must be in a and r		
			1-r				
			$25 = \frac{a}{}$	M1	or $\frac{6}{r} = 25(1-r)$	NB assuming $a = 10$ earns M0	
			$25 = \frac{a}{1 - \frac{6}{a}}$	MI	r		
			, u	A 1	25 2 25 . 65 01	A 11 · 1	
			$a^2 - 25a + 150 = 0$	A1 A1	or $25r^2 - 25r + 6$ [= 0] r = 0.4 and $r = 0.6$	All signs may be reversed	
			a = 10 obtained from formula, factorising, Factor theorem or completing the square	AI	r = 0.4 and $r = 0.6$		
			ractor theorem of completing the square			if M0, B1 for $r = 0.4$ and 0.6 and B1 for	
			a = 15	A1	a = 15	a = 15 by trial and improvement	
				111	6	mark to benefit of candidate	
			r = 0.4 and 0.6	A1	$a = \frac{6}{0.6} = 10$ oe		
				[7]	0.0		
11	(ii)		$10 \times (3/5)^{n-1}$ and $15 \times (2/5)^{n-1}$ seen	M1			
			2^{n-1} 10 2^{n-1} 2 2^{n-1} 3 2^{n-1}				
			$15 \times 2^{n-1} : 10 \times 3^{n-1} \text{ or } 3 \times \frac{2^{n-1}}{5^{n-1}} : 2 \times \frac{3^{n-1}}{5^{n-1}}$	M1	may be implied by $3 \times 2^{n-1} : 2 \times 3^{n-1}$	condone ratio reversed	
			_				
			$3 \times 2^{n-1} : 2 \times 3^{n-1}$	A1	and completion to given answer www	condone ratio reversed	
				AI	and completion to given answer www	condone ratio reversed	
				[3]			

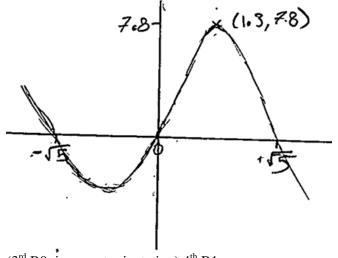
Appendix: examples for Question 10(ii)



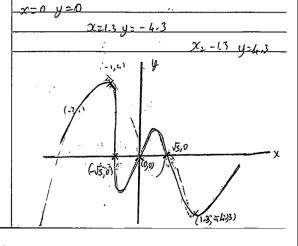
3rd B1 condone extreme ends ruled



 3^{rd} B0 doesn't meet x- axis 3 times


4th B1is earned in spite of the curve not being a cubic

Example 10


x-intercepts: co-ordinates reversed but condone this as candidates who write -2.23 , 2.23 only would not be penalised 4^{th} B1

Example 11

(3rd B0: incorrect orientation) 4th B1

Example 12

4th B1 earned.