Question		Answer	Marks	Guidance	
1		$\frac{1}{2} x^{-\frac{1}{2}}-3 x^{-2} \text { oe; isw }$	B3 [3]	need not be simplified B2 for one term correct ignore $+c$	if B0 allow M1 for either $x^{1 / 2}$ or x^{-1} seen before differentiation deduct one mark for extra term in x
2		$\begin{aligned} & (5), 8,11,(14), \ldots \text { isw } \\ & a=5 \text { and } d=3 \text { soi } \\ & S_{50}=\frac{50}{2}(2 \times 5+(50-1) \times 3) \text { oe } \\ & 3925 \end{aligned}$	B1 B1 M1 A1 [4]	if M0, SC1 for use of $a=8$ and obtaining 4075	if M0, award B2 if 3925 is obtained from summing individual terms or if unsupported
3	(i)	$\begin{aligned} & 9.8^{2}+6.4^{2}-2 \times 9.8 \times 6.4 \times \cos 53.4 \\ & 9.8^{2}+6.4^{2}-74.79 \ldots[=62.2 \ldots] \\ & 7.887 \ldots \text { or } 7.89 \text { or } 7.9 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { [3] } \\ & \hline \end{aligned}$	for evidence of correct order of operations used; may be implied by correct answer if M0, B3 for 7.89 or more precise www	6.89 implies M0 262.4368 implies M1 (calc in radian mode), (NB $\sqrt{ } 262.436 . .=16.199 . .$. NB 9.8sin53.4 $=7.87$
3	(ii)	$1 / 2 \times 9.8 \times 7.3 \times \sin (180-53.4)$ oe seen 28.716... or 28.72 or 28.7 or 29 isw	M1 A1 [2]	or $\sin 53.4$ used; may be embedded if M0, B2 for 28.7 or more precise www	may be split into height $=9.8 \times \sin 53.4$ then Area $=1 / 2 \times 7.3 \times$ height
4	(i)	$(6,9)$	$\begin{gathered} 2 \\ {[2]} \end{gathered}$	1 for each co-ordinate	SC0 for (6, 3)
4	(ii)	$(1.5,3)$	$\begin{gathered} 2 \\ {[2]} \end{gathered}$	1 for each co-ordinate	SC0 for (6, 3)
5		$\begin{aligned} & 45=1 / 2 r^{2} \times 1.6 \text { oe } \\ & r^{2}=90 / 1.6 \text { oe } \\ & r=7.5 \text { or exact equivalent cao } \\ & \text { (their } 7.5) \times 1.6 \\ & 27 \end{aligned}$	M1 M1 A1 M1 A1 [5]	$45=\pi r^{2} \times \frac{91.673 \ldots}{360}$ or B3 www $2 \pi \times(\text { their } r) \times \frac{91.673 \ldots}{360}$ or B2 www	allow recovery to 7.5 if working in degrees, but A0 for (eg) 7.49 12 implies M1

Question		Answergradient $=3$ seen$\log _{10} y-5=($ their 3$)\left(\log _{10} x-1\right)$ or using$(5,17)$$\log _{10} y=3 \log _{10} x+2$ oe$y=10^{3 \log _{10} x+2}$ oe$y=100 x^{3}$	Marks B1 M1 A1 M1 A1 [5]	Guidance	
6				may be embedded or $\log _{10} y=3 \log _{10} x+c$ and substitution of $(1,5)$ or $(5,17)$ for $\log _{10} x$ and $\log _{10} y$ or $\log _{10} y=\log _{10} x^{3}+\log _{10} 100$	condone omission of base throughout NB may recover from eg $Y=3 X+2$ or $\log _{10} \frac{y}{x^{3}}=2$ or $\log _{10} y=\log _{10} 100 x^{3}$
7		$\begin{aligned} & \frac{6 x^{\frac{3}{2}}}{3 / 2} \\ & 4 x^{\frac{3}{2}} \\ & -5 x+c \\ & \text { substitution of }(4,20) \\ & {[y=] 4 x^{1.5}-5 x+8 \text { or } c=8 \text { isw }} \end{aligned}$	M1* A1 B1 M1dep* A1 $[5]$	may appear later B0 if from $y=\left(6 x^{\frac{1}{2}}-5\right) x+c$	condone "+ c " not appearing until substitution
8		$\begin{aligned} & \hline 0.775397 . \text { soi } \\ & 0.388,1.18,3.53,4.32 \\ & \text { in degrees: 22.2, } 67.8,202,248^{*} \end{aligned}$	M1 A4 [5]	or 44.427.. ${ }^{\circ}$ A1 each value if A 0 then B 1 for at least two of 2.366..., 7.058..., 8.649...for 2θ or all of $135.57 \ldots$, 404.427..., 495.57...	if any of final answers not given to three sf deduct 1 mark from total A marks *if final answers in degrees deduct 1 from total A marks ignore extra values outside range if four correct answers in degrees or radians, deduct 1 for extra values in range

Question			Answer	Marks M3	Guidance	
9	(i)		```\(1 / 2 \times 0.2(0+0+2(0.5+0.7+0.75+0.7+\) 0.5)) [\(=0.63\)] (their 0.63\() \times 50\) 31.5```		M2 if one error, M1 if two errors condone omission of zeros or M3 for $0.05+0.12+0.145+0.145+0.12+0.05$ may be unsimplified, must be summed	basic shape of formula must be correct must be 6 strips M0 if brackets omitted, but allow recovery M0 if $h=1$ or 1.2 Area $=6.3$ and 0.53 imply M0
9	(ii)	(A)	$\begin{aligned} & 3.8 \times 0.2^{4}-6.8 \times 0.2^{3}+7.7 \times 0.2^{2}-4.2 \times 0.2 \\ & 0.01968 \text { cao isw } \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & {[2]} \\ & \hline \end{aligned}$	± 0.58032 implies M1 or B2 if unsupported	condone one sign error allow - 0.01968
9	(ii)	(B)	$\begin{aligned} & \frac{3.8 x^{5}}{5}-\frac{6.8 x^{4}}{4}+\frac{7.7 x^{3}}{3}-\frac{4.2 x^{2}}{2}+c \\ & \mathrm{~F}(0.9)[-\mathrm{F}(0)] \\ & 50 \times \text { their } \pm \mathrm{F}(0.9) \\ & 24.8 \text { to } 24.9 \text { cao } \end{aligned}$	$\begin{gathered} \text { M2 } \\ \\ \text { M1* } \\ \text { M1dep* } \\ \text { A1 } \\ \text { [5] } \end{gathered}$	M1 for two terms correct excluding c condone omission of c as long as at least M1 awarded	accept 2.56 to 2.57 for coefficient of x^{3} allow M1 if all signs reversed NB F $(0.9)=-0.496 \ldots$

Question		Answer $y^{\prime}=3 x^{2}-5$ their $y^{\prime}=0$ $(1.3,-4.3)$ cao $(-1.3,4.3)$ cao	MarksM1M1A1A1[4]	Guidance	
10	(i)			or A1 for $x= \pm \sqrt{\frac{5}{3}}$ oe soi allow if not written as co-ordinates if pairing is clear	ignore any work relating to second derivative
10	(ii)	crosses axes at $(0,0)$ and $(\pm \sqrt{5}, 0)$ sketch of cubic with turning points in correct quadrants and of correct orientation and passing through origin x-intercepts $\pm \sqrt{ } 5$ marked	B1 B1 B1 B1 [4]	condone x and y intercepts not written as co-ordinates; may be on graph \pm (2.23 to 2.24) implies $\pm \sqrt{ } 5$ may be in decimal form ($\pm 2.2 \ldots$)	See examples in Appendix must meet the x-axis three times B0 eg if more than 1 point of inflection
10	(iii)	$\begin{aligned} & \text { substitution of } x=1 \text { in } \mathrm{f}^{\prime}(x)=3 x^{2}-5 \\ & -2 \\ & \left.y--4=\text { (their } \mathrm{f}^{\prime}(1)\right) \times(x-1) \text { oe } \\ & -2 x-2=x^{3}-5 x \text { and completion to given } \\ & \text { result www } \\ & \text { use of Factor theorem in } x^{3}-3 x+2 \text { with } \\ & -1 \text { or } \pm 2 \\ & x=-2 \text { obtained correctly } \end{aligned}$		or $-4=-2 \times(1)+c$ or any other valid method; must be shown	sight of -2 does not necessarily imply M1: check $\mathrm{f}^{\prime}(x)=3 x^{2}-5$ is correct in part (i) eg long division or comparing coefficients to find $(x-1)\left(x^{2}+x-2\right)$ or $(x+2)\left(x^{2}-2 x+1\right)$ is enough for M1 with both factors correct NB MOA0 for $x\left(x^{2}-3\right)=-2$ so $x=-2$ or $x^{2}-3=-2$ oe

Question		Answer	Marks	Guidance	
11	(i)	$\begin{aligned} & a r=6 \text { oe } \\ & \frac{a}{1-r}=25 \text { oe } \\ & 25=\frac{a}{1-6 / a} \\ & a^{2}-25 a+150[=0] \end{aligned}$ $a=10$ obtained from formula, factorising, Factor theorem or completing the square $\begin{aligned} & a=15 \\ & r=0.4 \text { and } 0.6 \end{aligned}$	B1 B1 M1 A1 A1 A1 A1 [7]	must be in a and r must be in a and r or $\frac{6}{r}=25(1-r)$ or $25 r^{2}-25 r+6[=0]$ $r=0.4$ and $r=0.6$ $\begin{aligned} & a=15 \\ & a=\frac{6}{0.6}=10 \text { oe } \end{aligned}$	NB assuming $a=10$ earns M0 All signs may be reversed if M0, B1 for $r=0.4$ and 0.6 and B1 for $a=15$ by trial and improvement mark to benefit of candidate
11	(ii)	$\begin{aligned} & 10 \times(3 / 5)^{n-1} \text { and } 15 \times(2 / 5)^{n-1} \text { seen } \\ & 15 \times 2^{n-1}: 10 \times 3^{n-1} \text { or } 3 \times \frac{2^{n-1}}{5^{n-1}}: 2 \times \frac{3^{n-1}}{5^{n-1}} \\ & 3 \times 2^{n-1}: 2 \times 3^{n-1} \end{aligned}$	M1 M1 A1 [3]	may be implied by $3 \times 2^{n-1}: 2 \times 3^{n-1}$ and completion to given answer www	condone ratio reversed condone ratio reversed

Appendix: examples for Question 10(ii)
Example 1

