RECOGNIIING ACHIEVEMENT

ADVANCED GCE
 MATHEMATICS (MEI)

INSTRUCTIONS TO CANDIDATES

- Write your name clearly in capital letters, your Centre Number and Candidate Number in the spaces provided on the Answer Booklet.
- Use black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure that you know what you have to do before starting your answer.
- Answer all the questions.
- Do not write in the bar codes.
- You are permitted to use a graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.
- The total number of marks for this paper is 72 .
- This document consists of 4 pages. Any blank pages are indicated.

Section A (36 marks)

1 Solve the inequality $|x-1|<3$.

2 (i) Differentiate $x \cos 2 x$ with respect to x.
(ii) Integrate $x \cos 2 x$ with respect to x.

3 Given that $\mathrm{f}(x)=\frac{1}{2} \ln (x-1)$ and $\mathrm{g}(x)=1+\mathrm{e}^{2 x}$, show that $\mathrm{g}(x)$ is the inverse of $\mathrm{f}(x)$.

4 Find the exact value of $\int_{0}^{2} \sqrt{1+4 x} \mathrm{~d} x$, showing your working.

5 (i) State the period of the function $\mathrm{f}(x)=1+\cos 2 x$, where x is in degrees.
(ii) State a sequence of two geometrical transformations which maps the curve $y=\cos x$ onto the curve $y=\mathrm{f}(x)$.
(iii) Sketch the graph of $y=\mathrm{f}(x)$ for $-180^{\circ}<x<180^{\circ}$.

6 (i) Disprove the following statement.

$$
\begin{equation*}
\text { 'If } p>q, \text { then } \frac{1}{p}<\frac{1}{q}, \tag{2}
\end{equation*}
$$

(ii) State a condition on p and q so that the statement is true.

7 The variables x and y satisfy the equation $x^{\frac{2}{3}}+y^{\frac{2}{3}}=5$.
(i) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=-\left(\frac{y}{x}\right)^{\frac{1}{3}}$.

Both x and y are functions of t.
(ii) Find the value of $\frac{\mathrm{d} y}{\mathrm{~d} t}$ when $x=1, y=8$ and $\frac{\mathrm{d} x}{\mathrm{~d} t}=6$.

Section B (36 marks)

8 Fig. 8 shows the curve $y=x^{2}-\frac{1}{8} \ln x$. P is the point on this curve with x-coordinate 1 , and R is the point $\left(0,-\frac{7}{8}\right)$.

Fig. 8
(i) Find the gradient of PR.
(ii) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$. Hence show that PR is a tangent to the curve.
(iii) Find the exact coordinates of the turning point Q .
(iv) Differentiate $x \ln x-x$.

Hence, or otherwise, show that the area of the region enclosed by the curve $y=x^{2}-\frac{1}{8} \ln x$, the x-axis and the lines $x=1$ and $x=2$ is $\frac{59}{24}-\frac{1}{4} \ln 2$.

9 Fig. 9 shows the curve $y=\mathrm{f}(x)$, where $\mathrm{f}(x)=\frac{1}{\sqrt{2 x-x^{2}}}$.
The curve has asymptotes $x=0$ and $x=a$.

Fig. 9
(i) Find a. Hence write down the domain of the function.
(ii) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x-1}{\left(2 x-x^{2}\right)^{\frac{3}{2}}}$.

Hence find the coordinates of the turning point of the curve, and write down the range of the function.

The function $\mathrm{g}(x)$ is defined by $\mathrm{g}(x)=\frac{1}{\sqrt{1-x^{2}}}$.
(iii) (A) Show algebraically that $\mathrm{g}(x)$ is an even function.
(B) Show that $\mathrm{g}(x-1)=\mathrm{f}(x)$.
(C) Hence prove that the curve $y=\mathrm{f}(x)$ is symmetrical, and state its line of symmetry.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

