

Mathematics (MEI)

Advanced GCE A2 7895-8

Advanced Subsidiary GCE AS 3895-8

Mark Schemes for the Units

January 2009

3895-8/7895-8/MS/R/09J

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, GCSEs, OCR Nationals, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2009

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

CONTENTS

Advanced GCE Mathematics (MEI) (7895) Advanced GCE Further Mathematics (MEI) (7896) Advanced GCE Further Mathematics (Additional) (MEI) (7897) Advanced GCE Pure Mathematics (MEI) (7898)

Advanced Subsidiary GCE Mathematics (MEI) (3895) Advanced Subsidiary GCE Further Mathematics (MEI) (3896) Advanced Subsidiary GCE Further Mathematics (Additional) (MEI) (3897) Advanced Subsidiary GCE Pure Mathematics (MEI) (3898)

MARK SCHEME FOR THE UNITS

Unit/Content	Page
4751 (C1) Introduction to Advanced Mathematics	1
4752 (C2) Concepts for Advanced Mathematics	6
4753 (C3) Methods for Advanced Mathematics	9
4754 (C4) Applications of Advanced Mathematics	13
4755 (FP1) Further Concepts for Advanced Mathematics	18
4756 (FP2) Further Methods for Advanced Mathematics	24
4758 Differential Equations	29
4761 Mechanics 1	33
4762 Mechanics 2	38
4763 Mechanics 3	43
4766 Statistics 1	47
4767 Statistics 2	53
4768 Statistics 3	57
4771 Decision Mathematics 1	61
4776 Numerical Methods	65
Grade Thresholds	67

4751 (C1) Introduction to Advanced Mathematics

Sect	ion A			
1	(i) 0.125 or 1/8 (ii) 1	1 1	as final answer	2
2	y = 5x - 4 www	3	M2 for $\frac{y-11}{-9-11} = \frac{x-3}{-1-3}$ o.e. or M1 for grad $= \frac{11-(-9)}{3-(-1)}$ or 5 eg in y = 5x + k and M1 for $y - 11 =$ their $m(x - 3)$ o.e. or subst (3, 11) or $(-1, -9)$ in y = their $mx + c$ or M1 for $y = kx - 4$ (eg may be found by drawing)	3
3	x > 9/6 o.e. or $9/6 < x$ o.e. www isw	3	M2 for $9 < 6x$ or M1 for $-6x < -9$ or $k < 6x$ or $9 < kx$ or $7 + 2 < 5x + x$ [condone \leq for Ms]; if 0, allow SC1 for 9/6 o.e found	3
4	a = -5 www	3	M1 for $f(2) = 0$ used and M1 for $10 + 2a = 0$ or better long division used: M1 for reaching $(8 + a)x - 6$ in working and M1 for $8 + a = 3$ equating coeffts method: M2 for obtaining $x^3 + 2x^2 + 4x + 3$ as other factor	3
5	(i) $4[x^3]$	2	ignore any other terms in expansion M1 for $-3[x^3]$ and $7[x^3]$ soi;	
	(ii) $84[x^2]$ www	3	M1 for $\frac{7 \times 6}{2}$ or 21 or for Pascal's triangle seen with 1 7 21 row and M1 for 2 ² or 4 or $\{2x\}^2$	5

6	1/5 or 0.2 o.e. www	3	M1 for $3x + 1 = 2x \times 4$ and M1 for $5x = 1 + 2x \times 4$	
			M11 for 5x = 1 o.e.	
			M1 for $1.5 + \frac{1}{2x} = 4$ and	
			M1 for $\frac{1}{2x} = 2.5$ o.e.	3
7	(i) $5^{3.5}$ or $k = 3.5$ or 7/2 o.e.	2	M1 for $125 = 5^3$ or $\sqrt{5} = 5^{\frac{1}{2}}$	
			SC1 for $5^{\frac{1}{2}}$ o.e. as answer without working	
	(ii) $16a^{6}b^{10}$	2	M1 for two 'terms' correct and multiplied; mark final answer only	4
8	$b^2 - 4ac$ soi	M1	allow in quadratic formula or clearly looking for perfect square	
	$k^2 - 4 \times 2 \times 18 < 0 \text{ o.e.}$	M1	condone \leq ; or M1 for 12 identified as boundary	
	-12 < k < 12	A2	may be two separate inequalities; A1 for \leq used or for one 'end' correct	
			if two separate correct inequalities seen, isw for then wrongly combining them	
			into one statement; condone b instead of k ;	
			if no working, SC2 for $k < 12$ and SC2 for $k > -12$ (ie SC2 for each 'end'	4
0	$11 \pm 5 = 22$	M1	correct)	
9	y + 3 - xy + 2x y - xy = 2x - 5 oe or ft	M1	for collecting terms	
	y(1-x) = 2x - 5 oe or ft	M1	for taking out y factor; dep on xy term	
	$[y=]\frac{2x-5}{1}$ oe or ft as final answer	M1	for division and no wrong work after	
	1-x		ft earlier errors for equivalent steps if	
			error does not simplify problem	4
10	(i) 9 √3	2	M1 for $5\sqrt{3}$ or $4\sqrt{3}$ seen	
	(ii) $6 + 2\sqrt{2}$ www	3	M1 for attempt to multiply num. and denom. by $3 + \sqrt{2}$ and M1 for denom. 7 or $9 - 2$ soi from denom. mult by $3 + \sqrt{2}$	-
				5

Section B

~~~					
11	i	C, mid pt of AB = $\left(\frac{11+(-1)}{2}, \frac{4}{2}\right)$ = (5, 2)	B1	evidence of method required – may be on diagram, showing equal steps, or start at A or B and go half the difference towards the other	
		$[AB^2 =] 12^2 + 4^2 [= 160]$ oe or $[CB^2 =] 6^2 + 2^2 [=40]$ oe with AC	B1	or square root of these; accept unsimplified	
		quote of $(x - a)^2 + (y - b)^2 = r^2$ o.e with different letters	B1	or (5, 2) clearly identified as centre and $\sqrt{40}$ as <i>r</i> (or 40 as $r^2$ ) www or quote of <i>gfc</i> formula and finding c = -11	
		completion (ans given)	B1	dependent on centre (or midpt) and radius (or radius ² ) found independently and correctly	4
	ii	correct subst of $x = 0$ in circle eqn	M1		
		soi $(y-2)^2 = 15 \text{ or } y^2 - 4y - 11 [= 0]$ $y-2 = \pm \sqrt{15} \text{ or ft}$ $[y=]2 \pm \sqrt{15} \text{ cao}$	M1 M1 A1	condone one error or use of quad formula (condone one error in formula); ft only for 3 term quadratic in y if $y = 0$ subst, allow SC1 for (11, 0)	
				alt method: M1 for y values are $2 \pm a$ M1 for $a^2 + 5^2 = 40$ soi M1 for $a^2 = 40 - 5^2$ soi A1 for $[y = ]2 \pm \sqrt{15}$ cao	4
	iii	grad AB = $\frac{4}{11 - (-1)}$ or 1/3 o.e.	M1	or grad AC (or BC)	
		so grad tgt = $-3$ eqn of tgt is $y - 4 = -3$ ( $x - 11$ ) y = -3x + 37 or $3x + y = 37(0, 37) and (37/3, 0) o.e. ft isw$	M1 M1 A1 B2	or ft -1/their gradient of AB or subst (11, 4) in $y = -3x + c$ or ft (no ft for their grad AB used) accept other simplified versions B1 each, ft their tgt for grad $\neq 1$ or 1/3; accept $x = 0$ , $y = 37$ etc NB alt method: intercepts may be	
				tound first by proportion then used to find eqn	6

			3.64		
12	i	$3x^2 + 6x + 10 = 2 - 4x$	MI	for subst for x or y or subtraction	
				attempted	
		$3x^2 + 10x + 8 = 0$	M1	or $3y^2 - 52y + 220$ [=0]; for	
				rearranging to zero (condone one	
				error)	
		(2x + 4)(x + 2) [-0]	M1	ar(2y - 22)(y - 10); for songible	
		(5x + 4)(x + 2) [-0]	1111	(3y - 22)(y - 10), for sensible	
				attempt at factorising or formula or	
				completing square	
		x = -2 or $-4/3$ o.e.	A1	or A1 for each of $(-2, 10)$ and	
		y = 10  or  22/3  o.e.	A1	(-4/3, 22/3) o.e.	5
	ii	$3(x+1)^2 + 7$	4	1 for $a = 3$ 1 for $b = 1$ 2 for $c = 7$ or	
	••		•	M1 for $10-3 \times \text{their } h^2$ soi or for 7/3	
				or for $10/2$ their $k^2$ and	4
				$\frac{1}{10} \frac{1}{10} \frac{1}{5} = \frac{1}{10} \frac{1}{5} \frac{1}{5}$	4
	•••		DO		
	111	min at $y = 7$ or it from (ii) for	В2	may be obtained from (ii) or from	
		positive c (ft for (11) only if in		good symmetrical graph or identified	
		correct form)		from table of values showing	
				symmetry	
				condone error in <i>x</i> value in stated min	
				ft from (iii) [getting confused with 3	
				factor]	
				$\begin{array}{c} \text{Incruc}\\ \text{D1 if solv turning at at } n = 7 \text{ or ft} \end{array}$	
				BT If say turning pt at $y = 7$ of it	
				without identifying min	
				or M1 for min at $x = -1$ [e.g. may	
				start again and use calculus to obtain	
				$x = -1$ ] or min when $(x + 1)^{[2]} = 0$ ;	
				and A1 for showing v positive at min	
				or M1 for showing discriminant neg	
				so no real roots and $\Delta 1$ for showing	
				above evis not below as positive -2	
				above axis not below eg positive $x$	
				term or goes though (0, 10)	
				or M1 for stating bracket squared	
				must be positive [or zero] and A1 for	
				saying other term is positive	2

13	i	any correct <i>y</i> value calculated from quadratic seen or implied by plots	B1	for $x \neq 0$ or 1; may be for neg x or eg min.at (2.5, -1.25)	
		(0, 5)(1, 1)(2, -1)(3, -1)(4,1) and (5,5) plotted	P2	tol 1 mm; P1 for 4 correct [including $(2.5, -1.25)$ if plotted]; plots may be implied by curve within 1 mm of correct position	
		good quality smooth parabola within 1mm of their points	C1	allow for correct points only	
				[accept graph on graph paper, not insert]	4
	ii	$x^2 - 5x + 5 = \frac{1}{x}$	M1		
		$x^3 - 5x^2 + 5x = 1$ and completion to given answer	M1		2
	iii	divn of $x^3 - 5x^2 + 5x - 1$ by $x - 1$ as far as $x^3 - x^2$ used in working	M1	or inspection eg $(x - 1)(x^2 \dots + 1)$ or equating coeffts with two correct coeffts found	
		$x^2 - 4x + 1$ obtained	A1		
		use of $b^2 - 4ac$ or formula with quadratic factor	M1	or $(x-2)^2 = 3$ ; may be implied by correct roots or $\sqrt{12}$ obtained	
		$\sqrt{12}$ obtained and comment re shows other roots (real and) irrational or for	A2	[A1 for $\sqrt{12}$ and A1 for comment]	
		$2\pm\sqrt{3}$ or $\frac{4\pm\sqrt{12}}{2}$ obtained isw		NB A2 is available only for correct quadratic factor used; if wrong factor used, allow A1 ft for obtaining two irrational roots or for their discriminant and comment re	
				irrational [no ft if their discriminant is negative]	5

# 4752 (C2) Concepts for Advanced Mathematics

ſ	1	$4x^5$	1		
		$-12r^{-\frac{1}{2}}$	2	M1 for other $kr^{\frac{1}{2}}$	
		+c	2		Δ
ŀ	2	95.25, 95.3 or 95	4	M3	-
	_			¹ / ₂ ×5×(4.3+0+2[4.9+4.6+3.9+2.3+1.2])	
				M2 with 1 error, M1 with 2 errors.	
L	-	1.45		Or M3 for 6 correct trapezia.	4
	3	1.45 o.e.	2	M1 for $\frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6}$ oe	2
	4	105 and 165	3	B1 for one of these or M1 for $2x = 210$ or 330	3
	5	(i) graph along $y = 2$ with V at (3,2) (4,1) & (5,2)	2	M1 for correct V, or for $f(x+2)$	
		(ii) graph along $y = 6$ with V at	2	B1 for $(2,k)$ with all other elements	
ļ		(1,6) (2,3) & (3,6)		correct	4
	6	(i) 54.5	2	B1 for $d = 2.5$	
		(ii) Correct use of sum of AP formula with $n = 50, 20, 19$ or 21 with their d and $a = 7$ eg S ₅₀ = 3412.5, S ₂₀ = 615	M1	<u>or</u> M2 for correct formula for $S_{30}$ with their d M1 if one slip	
		Their $S_{50} - S_{20}$ dep on use of ap formula	M1		-
	7	$\frac{2797.5}{8}$ c.a.o.	Al 2	P1 analy term	5
	1	their $\frac{dy}{dx} = 0$	² M1 DM1	s.o.i.	5
		correct step		5.0.1.	
		$x = \frac{1}{2}$ c.a.o.	111		
╞	8	(i) 48	1		
		geometric, or GP	1		
		(11) mention of $ r  < 1$ condition o.e.	1	M1 for $\frac{192}{1}$	5
		5 - 120	2	$1\frac{1}{2}$	5
	9	(i) 1	1		
		(ii) (A) $3.5 \log_a x$	2	M1 for correct use of 1 st or 3 rd law	
		(ii) (B) $-\log_a x$	1		4
1			1		1

Mark Scheme

### Section B

10	i	7 - 2x	M1		
		x = 2, gradient = 3	A1	differentiation must be used	
		x = 2, y = 4	B1		
		y – their 4 = their grad ( $x$ – 2)	M1	or use of $y =$ their $mx + c$ and subst (2, their 4), dependent on diffn	
		subst $y = 0$ in their linear eqn	M1	seen	
		completion to $x = \frac{2}{3}$ (ans given)	A1		6
	ii	f(1) = 0 or factorising to	1	or using quadratic formula	
		(x-1)(6-x) or $(x-1)(x-6)$	1	correctly to obtain $x = 1$	
		6 www	1		2
			-		-
	iii	$\frac{7}{2}x^2 - \frac{1}{3}x^3 - 6x$	M1	for two terms correct; ignore $+c$	
		value at $2 - value$ at $1$	M1	ft attempt at integration only	
		$2\frac{1}{6}$ or 2.16 to 2.17	A1		
		$\frac{1}{2} \times \frac{4}{3} \times 4$ – their integral	M1		
		0.5 o.e.	A1		5
11	i(A)	150 (cm) or 1.5 m	2	M1 for $2.5 \times 60$ or $2.5 \times 0.6$ or for 1.5 with no units	2
	<b>i</b> (B)	$\frac{1}{2} \times 60^2 \times 2.5 \text{ or } 4500$	M1	or equivalents in $m^2$	
		$\frac{1}{2} \times 140^2 \times 2.5 \text{ or } 24500$	M1	-	
		subtraction of these	DM1	_	
		$20\ 000\ (\text{cm}^2)\ \text{isw}$	A1	or 2 $m^2$	4
	ii(A)	attempt at use of cosine rule	M1	condone 1 error in substitution	
		$\cos \text{EFP} = \frac{3.5^2 + 2.8^2 - 1.6^2}{0.6}$ o.e.	M1		
		$2 \times 2.8 \times 3.5$			3
		26.5 to 26.65 or 27			
	<b>;;</b> (D)	2.9 gin (their EED) a a	M1		
	п(в)	$2.0 \sin (\text{uterr ErP}) 0.e.$			2
		1.2 to 1.5 [m]	111		2

12	i	$\log a + \log (b^{t}) \text{ www}$ clear use of log $(b^{t}) = t \log b \operatorname{dep}$	B1 B1	condone omission of base throughout question	2
	ii	(2.398), 2.477, 2.556, 2.643, 2.724 points plotted correctly f.t. ruled line of best fit f.t.	T1 P1 1	On correct square	3
	iii	$\log a = 2.31$ to 2.33 a = 204 to 214 $\log b = 0.08$ approx	M1 A1 M1	ft their intercept	
		b = 1.195 to 1.215	A1		4
	iv	eg £210 million dep	1	their $\pounds a$ million	1
	v	$\frac{\log 1000 - \text{their intercept}}{\log 1000 - \log 1000} \approx \frac{3 - 2.32}{2.32}$	M1		
		their gradient $0.08$ = 8.15 to 8.85	A1	or B2 from trials	2

### 4753 (C3) Methods for Advanced Mathematics

$1  x-1  < 3 \Rightarrow -3 < x-1 < 3$ $\Rightarrow -2 < x < 4$	M1 A1 B1 [3]	or $x - 1 = \pm 3$ , or squaring $\Rightarrow$ correct quadratic $\Rightarrow$ (x + 2)(x - 4) (condone factorising errors) or correct sketch showing $y = 3$ to scale $-2 < < 4$ (penalise $\leq$ once only)
2(i) $y = x \cos 2x$ $\Rightarrow  \frac{dy}{dx} = -2x \sin 2x + \cos 2x$	M1 B1 A1 [3]	product rule $d/dx (\cos 2x) = -2\sin 2x$ oe cao
(ii) $\int x \cos 2x dx = \int x \frac{d}{dx} (\frac{1}{2} \sin 2x) dx$	M1	parts with $u = x$ , $v = \frac{1}{2} \sin 2x$
$= \frac{1}{2}x\sin 2x - \int \frac{1}{2}\sin 2x dx$ = $\frac{1}{2}x\sin 2x + \frac{1}{4}\cos 2x + c$	A1 A1ft	$+\frac{1}{4}\cos 2x$
	[4]	cao - must nave + c
<b>3</b> Either $y = \frac{1}{2} \ln(x-1)$ $x \leftrightarrow y$		or $y = e^{(x-1)/2}$
$\Rightarrow \qquad x = \frac{1}{2} \ln(y - 1)$	M1	attempt to invert and interchanging x with y o.e. (at any stage)
$\Rightarrow 2x = \ln (y - 1)$ $\Rightarrow e^{2x} = y - 1$	M1	$e^{\ln y - 1} = y - 1$ or $\ln (e^y) = y$ used
$\Rightarrow 1 + e^{2x} = y$ $\Rightarrow g(x) = 1 + e^{2x}$	E1	www
or $gf(x) = g(\frac{1}{2} \ln (x - 1))$ = 1 + $e^{\ln(x - 1)}$	M1	or $fg(x) = \dots$ (correct way round)
= 1 + x - 1 $= x$	M1 E1 [3]	$e^{\ln(x-1)} = x - 1$ or $\ln(e^{2x}) = 2x$ www
<b>4</b> $\int_{-\infty}^{2} \sqrt{1+4x} dx$ let $u = 1+4x$ , $du = 4dx$	M1	u = 1 + 4x and $du/dx = 4$ or $du = 4dx$
$= \int_{-9}^{9} u^{1/2} \cdot \frac{1}{4} du$	A1	$\int u^{1/2} \cdot \frac{1}{4} du$
$= \begin{bmatrix} 1 \\ -u^{3/2} \end{bmatrix}^9$	B1	$\int u^{1/2} du = \frac{u^{3/2}}{3/2} \text{ soi}$
$\begin{bmatrix} 6^{-1} \\ -27 \\ -1 \\ -26 \\ -13 \\ -14 \\ -26 \\ -13 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ -14 \\ $	M1	substituting correct limits $(u \text{ or } x)$ dep attempt to integrate
	Alcao M1	$k(1 + 4x)^{3/2}$
or $\frac{a}{dx}(1+4x)^{3/2} = 4 \cdot \frac{5}{2}(1+4x)^{1/2} = 6(1+4x)^{1/2}$	Al	$\int \frac{x(1+4x)}{(1+4x)^{1/2}} dx = \frac{2}{2}(1+4x)^{3/2} \dots$
$\Rightarrow \int_{0}^{2} (1+4x)^{1/2} dx = \left[\frac{1}{6}(1+4x)^{3/2}\right]_{0}^{2}$	A1	x ¹ / ₄ 3
$= \frac{27}{6} - \frac{1}{6} = \frac{26}{6} = \frac{13}{3} \text{ or } 4\frac{1}{3}$	M1	substituting limits (dep attempt to integrate)
	Alcao	

<b>5(i)</b> period 180°	B1 [1]	condone $0 \le x \le 180^\circ$ or $\pi$
(ii) one-way stretch in x-direction scale factor $\frac{1}{2}$ translation in y-direction through $\begin{pmatrix} 0\\1 \end{pmatrix}$	M1 A1 M1 A1 [4]	[either way round] condone 'squeeze', 'contract' for M1 stretch used and s.f $\frac{1}{2}$ condone 'move', 'shift', etc for M1 'translation' used, +1 unit $\begin{pmatrix} 0\\1 \end{pmatrix}$ only is M1 A0
(iii) 2 -180 180	M1 B1 A1 [3]	correct shape, touching <i>x</i> -axis at -90°, 90° correct domain (0, 2) marked or indicated (i.e. amplitude is 2)
6(i) e.g $p = 1$ and $q = -2$ $p > q$ but $1/p = 1 > 1/q = -\frac{1}{2}$	M1 E1 [2]	stating values of p, q with $p \ge 0$ and $q \le 0$ (but not $p = q = 0$ ) showing that $1/p > 1/q$ - if 0 used, must state that $1/0$ is undefined or infinite
(ii) Both $p$ and $q$ positive (or negative)	B1 [1]	or $q > 0$ , 'positive integers'
7(i) $\frac{2}{3}x^{-1/3} + \frac{2}{3}y^{-1/3}\frac{dy}{dx} = 0$ $\Rightarrow dy = \frac{2}{3}x^{-1/3}$	M1 A1	Implicit differentiation (must show = 0)
$\frac{dy}{dx} = -\frac{3}{\frac{2}{3}y^{-1/3}}$ $= -\frac{y^{1/3}}{x^{1/3}} = -\left(\frac{y}{x}\right)^{\frac{1}{3}} *$	M1 E1 [4]	solving for dy/dx www. Must show, or explain, one more step.
(ii) $\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt}$ = $-\left(\frac{8}{1}\right)^{\frac{1}{3}} \cdot 6$ = $-12$	M1 A1 A1cao [3]	any correct form of chain rule

8(i) When $x = 1$ $y = 1^{2} - (\ln 1)/8 = 1$ Gradient of PR = $(1 + 7/8)/1 = 1\frac{7}{8}$	B1 M1 A1 [3]	1.9 or better
(ii) $\frac{dy}{dx} = 2x - \frac{1}{8x}$ When $x = 1$ , $\frac{dy}{dx} = 2 - \frac{1}{8} = \frac{1}{8}$ Same as gradient of PR, so PR touches curve	B1 B1dep E1 [3]	cao 1.9 or better dep 1 st B1 dep gradients exact
(iii) Turning points when $dy/dx = 0$ $\Rightarrow  2x - \frac{1}{8x} = 0$ $\Rightarrow  2x = \frac{1}{8x}$	M1	setting their derivative to zero
$\Rightarrow x^2 = 1/16$ $\Rightarrow x = \frac{1}{4} (x > 0)$ When $x = \frac{1}{4} (x > 0)$	M1 A1	multiplying through by <i>x</i> allow verification
when $x = \frac{7}{4}$ , $y = \frac{16}{16} - \frac{16}{8} \ln \frac{1}{4} = \frac{16}{16} + \frac{16}{8} \ln 4$ So TP is $(\frac{1}{4}, \frac{1}{16} + \frac{1}{8} \ln 4)$	M1 A1cao [5]	substituting for x in y o.e. but must be exact, not $1/4^2$ . Mark final answer.
(iv) $\frac{d}{dx}(x\ln x - x) = x \cdot \frac{1}{x} + 1 \cdot \ln x - 1 = \ln x$	M1 A1	product rule ln <i>x</i>
Area = $\int_{1}^{2} (x^{2} - \frac{1}{8} \ln x) dx$ = $\left[ \frac{1}{3} x^{3} - \frac{1}{8} (x \ln x - x) \right]_{1}^{2}$ = $(\frac{8}{3} - \frac{1}{4} \ln 2 + \frac{1}{4}) - (\frac{1}{3} - \frac{1}{8} \ln 1 + \frac{1}{8})$ = $\frac{7}{3} + \frac{1}{8} - \frac{1}{4} \ln 2$	M1 M1 A1 M1	correct integral and limits (soi) – condone no dx $\int \ln x dx = x \ln x - x \text{ used (or derived using integration by parts)}$ $\frac{1}{3}x^3 - \frac{1}{8}(x \ln x - x) - \text{bracket required substituting correct limits}$
$= \frac{59}{24} - \frac{1}{4} \ln 2  *$	E1 [7]	must show at least one step

#### Mark Scheme

9(i) Asymptotes when $()(2x - x^2) = 0$ $\Rightarrow x(2 - x) = 0$ $\Rightarrow x = 0 \text{ or } 2$ $\Rightarrow x = 2$ Domain is $0 < x < 2$	M1 A1 B1ft [3]	or by verification $x > 0$ and $x < 2$ , not $\leq$
(ii) $y = (2x - x^2)^{-1/2}$ let $u = 2x - x^2$ , $y = u^{-1/2}$ $\Rightarrow  dy/du = -\frac{1}{2} u^{-3/2}$ , $du/dx = 2 - 2x$ $\Rightarrow  \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = -\frac{1}{2} (2x - x^2)^{-3/2} \cdot (2 - 2x)$ $= \frac{x - 1}{(2x - x^2)^{3/2}} *$	M1 B1 A1 E1	chain rule (or within correct quotient rule) $-\frac{1}{2}u^{-3/2}$ or $-\frac{1}{2}(2x-x^2)^{-3/2}$ or $\frac{1}{2}(2x-x^2)^{-1/2}$ in quotient rule $\times (2-2x)$ www – penalise missing brackets here
dy/dx = 0  when  x - 1 = 0 $\Rightarrow  x = 1, \\ y = 1/\sqrt{(2 - 1)} = 1$ Range is $y \ge 1$	M1 A1 B1 B1ft [8]	extraneous solutions M0
(iii) (A) $g(-x) = \frac{1}{\sqrt{1 - (-x)^2}} = \frac{1}{\sqrt{1 - x^2}} = g(x)$	M1 E1	Expression for $g(-x)$ – must have $g(-x) = g(x)$ seen
$(B) \ g(x-1) = \frac{1}{\sqrt{1 - (x-1)^2}}$ $= \frac{1}{\sqrt{1 - x^2 + 2x - 1}} = \frac{1}{\sqrt{2x - x^2}} = f(x)$	М1 Е1	must expand bracket
( <i>C</i> ) $f(x)$ is $g(x)$ translated 1 unit to the right. But $g(x)$ is symmetrical about Oy So $f(x)$ is symmetrical about $x = 1$ .	M1 M1 A1	dep both M1s
or $f(1-x) = g(-x)$ , $f(1+x) = g(x)$ $\Rightarrow  f(1+x) = f(1-x)$ $\Rightarrow  f(x) \text{ is symmetrical about } x = 1.$	M1 E1 A1 [7]	or $f(1-x) = \frac{1}{\sqrt{2-2x-(1-x)^2}} = \frac{1}{\sqrt{2-2x-1+2x-x^2}} = \frac{1}{\sqrt{1-x^2}}$ $f(1+x) = \frac{1}{\sqrt{2+2x-(1+x)^2}} = \frac{1}{\sqrt{2+2x-1-2x-x^2}} = \frac{1}{\sqrt{1-x^2}}$

### 4754 (C4) Applications of Advanced Mathematics

$1 \qquad \frac{3x+2}{x(x^2+1)} = \frac{A}{x} + \frac{Bx+C}{(x^2+1)}$ $\Rightarrow \qquad 3x+2 = A(x^2+1) + (Bx+C)x$ $x = 0 \Rightarrow 2 = A$ coefft of $x^2: 0 = A + B \Rightarrow B = -2$ coefft of $x: 3 = C$ $\Rightarrow \qquad \frac{3x+2}{x(x^2+1)} = \frac{2}{x} + \frac{3-2x}{(x^2+1)}$	M1 M1 B1 M1 A1 A1 [6]	correct partial fractions equating coefficients at least one of $B,C$ correct
2(i) $(1+2x)^{1/3} = 1 + \frac{1}{3} \cdot 2x + \frac{\frac{1}{3} \cdot (-\frac{2}{3})}{2!} (2x)^2 +$ $= 1 + \frac{2}{3}x - \frac{2}{18} 4x^2 +$ $= 1 + \frac{2}{3}x - \frac{4}{9}x^2 + *$ Next term $= \frac{\frac{1}{3} \cdot (-\frac{2}{3})(-\frac{5}{3})}{3!} (2x)^3$ $= \frac{40}{81}x^3$ Valid for $-1 < 2x < 1$ $\Rightarrow -\frac{1}{2} < x < \frac{1}{2}$	M1 A1 E1 M1 A1 B1 [6]	binomial expansion correct unsimplified expression simplification www
3 $4\mathbf{j} - 3\mathbf{k} = \lambda \mathbf{a} + \mu \mathbf{b}$ $= \lambda(2\mathbf{i} + \mathbf{j} - \mathbf{k}) + \mu(4\mathbf{i} - 2\mathbf{j} + \mathbf{k})$ $\Rightarrow  0 = 2\lambda + 4\mu$ $4 = \lambda - 2\mu$ $-3 = -\lambda + \mu$ $\Rightarrow  \lambda = -2\mu, 2\lambda = 4 \Rightarrow \lambda = 2, \mu = -1$	M1 M1 A1 A1, A1 [5]	equating components at least two correct equations
4 LHS = $\cot \beta - \cot \alpha$ $= \frac{\cos \beta}{\sin \beta} - \frac{\cos \alpha}{\sin \alpha}$ $= \frac{\sin \alpha \cos \beta - \cos \alpha \sin \beta}{\sin \alpha \sin \beta}$ $= \frac{\sin(\alpha - \beta)}{\sin \alpha \sin \beta}$ OR RHS = $\frac{\sin(\alpha - \beta)}{\sin \alpha \sin \beta} = \frac{\sin \alpha \cos \beta}{\sin \alpha \sin \beta} - \frac{\cos \alpha \sin \beta}{\sin \alpha \sin \beta}$ $= \cot \beta - \cot \alpha$	M1 M1 E1 M1 M1 E1 [3]	cot = cos / sin combining fractions www using compound angle formula splitting fractions using cot=cos/sin

<b>5(i)</b> Normal vectors $\begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$	B1	
Angle between planes is $\theta$ , where		
$\cos\theta = \frac{2 \times 1 + (-1) \times 0 + 1 \times (-1)}{\sqrt{2^2 + (-1)^2 + 1^2} \sqrt{1^2 + 0^2 + (-1)^2}}$ = 1/2/12	M1 M1	scalar product finding invcos of scalar product divided by two modulae
$\Rightarrow  \theta = 73.2^{\circ} \text{ or } 1.28 \text{ rads}$	A1 [4]	
(ii) $\mathbf{r} = \begin{pmatrix} 2\\0\\1 \end{pmatrix} + \lambda \begin{pmatrix} 2\\-1\\1 \end{pmatrix}$ $= \begin{pmatrix} 2+2\lambda\\-\lambda\\-\lambda \end{pmatrix}$	B1	
$(1+\lambda)$ $\rightarrow 2(2+2\lambda) - (-\lambda) + (1+\lambda) = 2$	M1	
$\Rightarrow 2(2+2\lambda) - (-\lambda) + (1+\lambda) - 2$ $\Rightarrow 5 + 6\lambda = 2$	A 1	
$\Rightarrow  \lambda = -\frac{1}{2}$ So point of intersection is $(1, \frac{1}{2}, \frac{1}{2})$	A1 [4]	
6(i) $\cos \theta + \sqrt{3} \sin \theta = r \cos(\theta - \alpha)$ = $R \cos \theta \cos \alpha + R \sin \theta \sin \alpha$ $\Rightarrow R \cos \alpha = 1, R \sin \alpha = \sqrt{3}$ $\Rightarrow R^2 = 1^2 + (\sqrt{3})^2 = 4, R = 2$ $\tan \alpha = \sqrt{3}$	B1 M1	R = 2 equating correct pairs
$\Rightarrow \alpha = \pi/3$	A1 [4]	$\tan \alpha = \sqrt{3}$ 0.e.
(ii) derivative of tan $\theta$ is sec ² $\theta$	B1	
$\int_{0}^{\frac{\pi}{3}} \frac{1}{(\cos\theta + \sqrt{3}\sin\theta)^{2}} d\theta = \int_{0}^{\frac{\pi}{3}} \frac{1}{4} \sec^{2}(\theta - \frac{\pi}{3}) d\theta$	M1	ft their $\alpha$
$= \left[\frac{1}{4}\tan(\theta - \frac{\pi}{3})\right]_{0}^{\frac{\pi}{3}}$	A1	$\frac{1}{R^2}$ [tan ( $\theta - \pi/3$ ] ft their R, $\alpha$ (in radians)
$= \frac{1}{4} (0 - (-\sqrt{3}))$ = $\sqrt{3}/4 *$	E1	www
	[4]	

Section B

<b>7(i)</b> (A) $9 / 1.5 = 6$ hours (B) $18/1.5 = 12$ hours	B1 B1 [2]	
(ii) $\frac{d\theta}{dt} = -k(\theta - \theta_0)$ $\Rightarrow \int \frac{d\theta}{\theta - \theta_0} = \int -kdt$ $\Rightarrow \ln(\theta - \theta_0) = -kt + c$ $\theta - \theta_0 = e^{-kt + c}$ $\theta = \theta_0 + Ae^{-kt} *$	M1 A1 A1 M1 E1 [5]	separating variables $\ln(\theta - \theta_0)$ -kt + c anti-logging correctly(with <i>c</i> ) $A=e^{c}$
(iii) $98 = 50 + Ae^{0}$ $\Rightarrow A = 48$ Initially $\frac{d\theta}{dt} = -k(98 - 50) = -48k = -1.5$ $\Rightarrow k = 0.03125^{*}$	M1 A1 M1 E1 [4]	
(iv) (A) $89 = 50 + 48e^{-0.03125t}$ $\Rightarrow 39/48 = e^{-0.03125t}$ $\Rightarrow t = \ln(39/48)/(-0.03125) = 6.64$ hours (B) $80 = 50 + 48e^{-0.03125t}$ $\Rightarrow 30/48 = e^{-0.03125t}$ $\Rightarrow t = \ln(30/48)/(-0.03125) = 15$ hours	M1 M1 A1 M1 A1 [5]	equating taking lns correctly for either
(v) Models disagree more for greater temperature loss	B1 [1]	

8(i)	$\frac{dy}{d\theta} = 2\cos 2\theta - 2\sin \theta, \ \frac{dx}{d\theta} = 2\cos \theta$	B1, B1	
	$\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta}$	M1	substituting for theirs
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2\cos 2\theta - 2\sin \theta}{2\cos \theta} = \frac{\cos 2\theta - \sin \theta}{\cos \theta}$	A1 [4]	oe
(ii)	When $\theta = \pi/6$ , $\frac{dy}{dx} = \frac{\cos \pi/3 - \sin \pi/6}{\cos \pi/6}$ = $\frac{1/2 - 1/2}{\sqrt{3}/2} = 0$	E1	
	Coords of B: $x = 2 + 2\sin(\pi/6) = 3$ $y = 2\cos(\pi/6) + \sin(\pi/3) = 3\sqrt{3/2}$	M1 A1,A1	for either exact
	$BC = 2 \times 3\sqrt{3}/2 = 3\sqrt{3}$	B1ft [5]	
(iii)	(A) $y = 2\cos\theta + \sin 2\theta$ = $2\cos\theta + 2\sin\theta\cos\theta$ = $2\cos\theta(1 + \sin\theta)$ = $x\cos\theta$ *	M1 E1	$\sin 2\theta = 2\sin \theta \cos \theta$
	$(B) \sin\theta = \frac{1}{2} (x - 2) \cos^{2}\theta = 1 - \sin^{2}\theta = 1 - \frac{1}{4} (x - 2)^{2} = 1 - \frac{1}{4} x^{2} + x - 1 = (x - \frac{1}{4} x^{2}) *$	B1 M1 E1	
	(C) Cartesian equation is $y^2 = x^2 \cos^2 \theta$ = $x^2(x - \frac{1}{4}x^2)$ = $x^3 - \frac{1}{4}x^{4*}$	M1 E1 [7]	squaring and substituting for <i>x</i>
(iv)	$V = \int_0^4 \pi y^2 dx$		
	$=\pi \int_{0}^{4} (x^{3} - \frac{1}{4}x^{4}) dx$	M1	need limits
	$=\pi \left[\frac{1}{4}x^{4} - \frac{1}{20}x^{5}\right]_{0}^{4}$	B1	$\left[\frac{1}{4}x^4 - \frac{1}{20}x^5\right]$
	$= \pi(64 - 51.2)$ = 12.8\pi = 40.2 (m ³ )	A1 [3]	$12.8\pi$ or 40 or better.

Comprehension

1	$400\pi d_{-10}$	M1	
	$\frac{1000}{1000} = 10$	<b>F</b> 1	
	25 7.06	EI	
	$d = \frac{1}{\pi} = 7.96$		
2	$\frac{1}{1}$	M1	
	$V = \pi 20^{2} h + \frac{1}{2} (\pi 20^{2} H - \pi 20^{2} h)$		
	$=\frac{1}{2}(\pi 20^2 H + \pi 20^2 h)$ cm ³ = $200\pi (H + h)$ cm ³	M1	divide by
	2	F1	1000
	$=\frac{1}{2}\pi(H+h)$ litres	LI	
2	<b>5</b>	D1	or avaluated
3	$H = 5 + 40 \tan 30^{\circ} \text{ or } H = h + 40 \tan \theta$	DI	of evaluated
	$V = \frac{1}{\pi} \pi (H + h) = \frac{1}{\pi} \pi (10 + 40 \tan 30^{\circ})$	M1	including
	5 5 5 5		substitution of
	-20.8 litras		values
4	-20.8 miles	Al	
4	$V = \frac{1}{80} \times (40 + 5)$	MI	
		M1	×30
	$\times 30 \text{ cm}^3 = 54\ 000 \text{ cm}^3$	A1	
5	= 54  litres	D1	
3	(i) Accurate algebraic simplification to give $y^2 - 160y + 400 = 0$	DI	
	(11) Use of quadratic formula (or other method) to find other root: $d = 157.5$ cm	M1	
	to find other root. $a = 157.5$ cm. This is greater than the height of the tank so not possible	A1	
	This is greater than the neight of the tank so not possible	<b>F1</b>	
6	<u></u>	El D1	
0	$\frac{y-10}{2}$	ы	
	Substitute for y in (4):		
	$V = \frac{1}{100} \int_{0}^{100} 375 dx$	M1	
	$1000 J_0$		
	$V - \frac{1}{2} \times 37500 - 375 *$	E1	
	1000 1000 - 57.5		
		[18]	
		L L L L	

### 4755 (FP1) Further Concepts for Advanced Mathematics

1(i)	$z = \frac{6 \pm \sqrt{36 - 40}}{2}$ $\Rightarrow z = 3 + j \text{ or } z = 3 - j$	M1 A1 [2]	Use of quadratic formula/completing the square For both roots
1(ii)	$ 3+j  = \sqrt{10} = 3.16 \ (3s.f.)$	M1	Method for modulus
	$\arg(3+j) = \arctan(\frac{1}{3}) = 0.322 \ (3s.f.)$	M1	Method for argument (both methods must be seen
	$\Rightarrow \text{roots are } \sqrt{10} (\cos 0.322 + j\sin 0.322)$ and $\sqrt{10} (\cos 0.322 - j\sin 0.322)$ or $\sqrt{10} (\cos(-0.322) + j\sin(-0.322))$	A1 [ <b>3</b> ]	following A0) One mark for both roots in modulus- argument form – accept surd and decimal equivalents and $(r, \theta)$ form. Allow <u>+</u> 18.4° for $\theta$ .
2	$2x^{2} - 13x + 25 = A(x-3)^{2} - B(x-2) + C$ $\Rightarrow 2x^{2} - 13x + 25$ $= Ax^{2} - (6A + B)x + (2B + C) + 9A$ A = 2 B = 1	B1 M1	For A=2 Attempt to compare coefficients of $x^1$ or $x^0$ , or other valid method. For B and C,
	C = 5	[4]	cao.
3(i)	$\begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$	B1	
3(ii)	$ \begin{pmatrix} 0 & 2 \end{pmatrix} \begin{pmatrix} 0 & 2 & 3 & 1 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 0 & 2 & 3 & 1 \\ 0 & 0 & 2 & 2 \end{pmatrix} = \begin{pmatrix} 0 & 4 & 4 & 0 \\ 0 & 0 & 6 & 6 \end{pmatrix} $	[ <b>1</b> ] M1	Applying matrix to column vectors,
	$\Rightarrow A''=(4, 0), B''=(4, 6), C''=(0, 6)$	A1 [ <b>2</b> ]	All correct
3(iii)	Stretch factor 4 in x-direction. Stretch factor 6 in y-direction	B1 B1 [ <b>2</b> ]	Both factor and direction for each mark. SC1 for "enlargement", not stretch.

4	$\arg(z-(2-2j)) = \frac{\pi}{4}$	B1 B1 B1 <b>[3]</b>	Equation involving arg(complex variable). Argument (complex expression) = $\frac{\pi}{4}$ All correct
5	Sum of roots = $\alpha + (-3\alpha) + \alpha + 3 = 3 - \alpha = 5$	M1	Use of sum of roots
	$\Rightarrow \alpha = -2$	A1	
	Product of roots = $-2 \times 6 \times 1 = -12$	M1 M1	Attempt to use product of roots Attempt to use sum of products of roots in pairs
	Product of roots in pairs = $-2 \times 6 + (-2) \times 1 + 6 \times 1 = -8$ $\Rightarrow p = -8$ and $q = 12$	A1 A1 [6]	One mark for each, ft if $\alpha$ incorrect
	Alternative solution $(x-\alpha)(x+3\alpha)(x-\alpha-3)$	M1	Attempt to multiply factors
	$=x^{3}+(\alpha-3)x^{2}+(-5\alpha^{2}-6\alpha)x+3\alpha^{3}+9\alpha^{2}$ $=>\alpha=-2,$	M1A1 M1	Matching coefficient of $x^2$ , cao. Matching other coefficients
	p = -8 and $q = 12$	A1A1 [6]	One mark for each, ft incorrect $\alpha$ .
6	$\sum_{r=1}^{n} \left[ r \left( r^2 - 3 \right) \right] = \sum_{r=1}^{n} r^3 - 3 \sum_{r=1}^{n} r$	M1 M1	Separate into separate sums. (may be implied) Substitution of standard result in
	$=\frac{1}{4}n^{2}(n+1)^{2}-\frac{5}{2}n(n+1)$	A2	terms of <i>n</i> . For two correct terms (indivisible)
	$=\frac{1}{4}n(n+1)(n(n+1)-6)$	M1	
	$=\frac{1}{4}n(n+1)(n^2+n-6)=\frac{1}{4}n(n+1)(n+3)(n-2)$	A1	Attempt to factorise with $n(n+1)$ . Correctly factorised to give fully
		[6]	factorised form

7	When $n = 1$ , $6(3^n - 1) = 12$ , so true for $n = 1$	B1			
	Assume true for $n = k$ 12 + 36 + 108 + + (4 × 3 ^k ) = 6(3 ^k - 1)	E1	Assume true for <i>k</i>		
	$\Rightarrow 12 + 36 + 108 + \dots + (4 \times 3^{k+1})$ = 6(3 ^k - 1) + (4 × 3 ^{k+1} )	M1	Add correct next term to both sides		
	$= 6 \left[ \left( 3^{k} - 1 \right) + \frac{2}{3} \times 3^{k+1} \right]$	M1	Attempt to factorise with a factor 6		
	$= 6[3^{k} - 1 + 2 \times 3^{k}]$ = 6(3 ^{k+1} - 1)	A1	c.a.o. with correct simplification		
	But this is the given result with $k + 1$ replacing $k$ . Therefore if it is true for $n = k$ , it is true for $n = k + 1$ .	E1	Dependent on A1 and first E1		
	Since it is true for $n = 1$ it is true for $n = 1$ 2	E1	Dependent on B1 and second E1		
	3 and so true for all positive integers.	[7]			
	Section A Total: 36				

Section	B		
8(i) 8(ii)	$\left(\sqrt{3}, 0\right), \left(-\sqrt{3}, 0\right) \left(0, \frac{3}{8}\right)$	B1 B1 [2]	Intercepts with x axis (both) Intercept with y axis SC1 if seen on graph or if $x = \pm \sqrt{3}$ , y = 3/8 seen without $y = 0$ , $x = 0specified.$
0(1)	x = 4, x = -2, y = 1	В3 [ <b>3</b> ]	Minus 1 for each error. Accept equations written on the graph.
<b>8(iii)</b>			
		B1 B1B1 B1 [4]	Correct approaches to vertical asymptotes, LH and RH branches approaching horizontal asymptote On LH branch $0 < y < 1$ as $x \rightarrow -\infty$ .
8(iv)	$-2 < x \le -\sqrt{3} \text{ and } 4 > x \ge \sqrt{3}$	B1 B2 [ <b>3</b> ]	LH interval and RH interval correct (Award this mark even if errors in inclusive/exclusive inequality signs) All inequality signs correct, minus 1 each error

9(i)	$\alpha + \beta = 3$ $\alpha \alpha^* = (1+j)(1-j) = 2$ $\frac{\alpha + \beta}{\alpha} = \frac{3}{1+j} = \frac{3(1-j)}{(1+j)(1-j)} = \frac{3}{2} - \frac{3}{2}j$	B1 M1 A1 M1 A1 [5]	Attempt to multiply $(1+j)(1-j)$ Multiply top and bottom by $1-j$
9(ii)	(z - (1 + j))(z - (1 - j)) = $z^2 - 2z + 2$	M1 A1 [2]	Or alternative valid methods (Condone no "=0" here)
9(iii)	1-j and $2+j$	B1	For both
	Either (z - (2 - j))(z - (2 + j)) $= z^2 - 4z + 5$ $(z^2 - 2z + 2)(z^2 - 4z + 5)$ $z^4 - (z^3 + 15z^2 - 18z + 10)$	M1 M1	For attempt to obtain an equation using the product of linear factors involving complex conjugates Using the correct four factors
	$= 2^{-} - 6z^{-} + 15z^{-} - 18z^{-} + 10$ So equation is $z^{4} - 6z^{3} + 15z^{2} - 18z + 10 = 0$ Or alternative solution	A2 [ <b>5</b> ]	All correct, -1 each error (including omission of "=0") to min of 0
	Use of $\sum \alpha = 6$ , $\sum \alpha \beta = 15$ , $\sum \alpha \beta \gamma = 18$ and $\alpha \beta \gamma \delta = 10$	M1	Use of relationships between roots and coefficients.
	to obtain the above equation.	A3 [ <b>5</b> ]	All correct, -1 each error, to min of 0

#### **Mark Scheme**

10(i)	$\alpha = 3 \times -5 + 4 \times 11 + -1 \times 29 = 0$ $\beta = -2 \times -7 + 7 \times (5 + k) + -3 \times 7 = 28 + 7k$	B1 M1 A1	Attempt at row 3 x column 3
<b>10(ii)</b>	$\mathbf{AB} = \begin{pmatrix} 42 & 0 & 0 \\ 0 & 42 & 0 \\ 0 & 0 & 42 \end{pmatrix}$	[ <b>3</b> ] B2 [ <b>2</b> ]	Minus 1 each error to min of 0
<b>10(iii)</b>	$\mathbf{A}^{-1} = \frac{1}{42} \begin{pmatrix} 11 & -5 & -7 \\ 1 & 11 & 7 \\ -5 & 29 & 7 \end{pmatrix}$	M1 B1 A1 [ <b>3</b> ]	Use of <b>B</b> $\frac{1}{42}$ Correct inverse, allow decimals to 3 sf
10(iv)	$\frac{1}{42} \begin{pmatrix} 11 & -5 & -7 \\ 1 & 11 & 7 \\ -5 & 29 & 7 \end{pmatrix} \begin{pmatrix} 1 \\ -9 \\ 26 \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ $= \frac{1}{42} \begin{pmatrix} -126 \\ 84 \\ -84 \end{pmatrix} = \begin{pmatrix} -3 \\ 2 \\ -2 \end{pmatrix}$ $x = -3, y = 2, z = -2$	M1 A3 [ <b>4</b> ]	Attempt to pre-multiply by $\mathbf{A}^{-1}$ SC B2 for Gaussian elimination with 3 correct solutions, -1 each error to min of 0 Minus 1 each error
			Section B Total: 36
	Section B Total: 30 Total: 72		
10(a), 72			

# 4756 (FP2) Further Methods for Advanced Mathematics

1	$f(x) = \cos x$	f(0) = 1	M1	Derivatives cos, sin, cos, sin, cos
(a)(i)				
	$f'(x) = -\sin x$	f'(0) = 0		- ·
	$f''(x) = -\cos x$	f''(0) = -1	Al	Correct signs
	$f'''(x) = \sin x$	f'''(0) = 0	A 1	Competendence Demonstrations A1
	$J^{mn}(x) = \cos x$	$f^{(0)}(0) = 1$	AI	Correct values. Dep on previous A1
	$\Rightarrow \cos x = 1 - \frac{1}{2}x^2 + \frac{1}{2}$	$\frac{1}{4}x^4$	AI (ag) 4	WWW
(ii)	$\cos x \times \sec x = 1$		E1	0.e.
	$\Rightarrow \left(1 - \frac{1}{2}x^2 + \frac{1}{24}x^4\right) (1$	$+ax^2+bx^4\Big)=1$	M1	Multiply to obtain terms in $x^2$ and $x^4$
	$\Rightarrow 1 + \left(a - \frac{1}{2}\right)x^2 + \left(b - \frac{1}{2}\right)x^2 + \left(a - \frac{1}{2}\right)x^2 + \left$	$\left(\frac{1}{2}a + \frac{1}{24}\right)x^4 = 1$	A1	Terms correct in any form (may not be collected)
	$\Rightarrow  a - \frac{1}{2} = 0 , \ b - \frac{1}{2}a + $	$\frac{1}{24} = 0$		
	$\Rightarrow a = \frac{1}{2}$		B1	Correctly obtained by any method: must not just be stated
	$b = \frac{5}{24}$		B1	Correctly obtained by any method
			5	
(b)(i)	$y = \arctan \frac{x}{a}$			
	$\Rightarrow x = a \tan y$		M1	(a) $\tan y = $ and attempt to differentiate both sides
	$\Rightarrow  \frac{dx}{dy} = a \sec^2 y$		A1	Or $\sec^2 y \frac{dy}{dx} = \frac{1}{a}$
	$\Rightarrow  \frac{dx}{dy} = a(1 + \tan^2 y)$		A1	Use $\sec^2 y = 1 + \tan^2 y$ o.e.
	$\Rightarrow  \frac{dy}{dx} = \frac{a}{a^2 + x^2}$		A1 (ag)	www
				SC1: Use derivative of arctan <i>x</i> and Chain Rule (properly shown)
			4	
	$\int_{\Gamma}^{2} 1 \int_{\Gamma} \int_{T} 1 x^{2}$	$\rceil^2$	M1	arctan alone, or any tan substitution
(II)(A)	$\int_{-2} \frac{1}{4 + x^2} dx = \left\lfloor \frac{-\arctan \frac{1}{2}}{2} \right\rfloor$		A1	$\frac{1}{2}$ and $\frac{x}{2}$ , or $\int \frac{1}{2} d\theta$ without limits
	$=\frac{\pi}{4}$		A1	Evaluated in terms of $\pi$
			3	
(ii)(B)	$\int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{4}{1+4x^2} dx = \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{\frac{1}{4}+x^2} dx$	x	M1	arctan alone, or any tan substitution
	$= \left[2\arctan\left(2x\right)\right]_{-\frac{1}{2}}^{\frac{1}{2}}$		A1	2 and 2 <i>x</i> , or $\int 2d\theta$ without limits
	$=\pi$		A1 3	Evaluated in terms of $\pi$ <b>19</b>

<b>2 (i)</b>	Modulus = 1	B1	Must be separate
	$\Delta roument = \frac{\pi}{2}$	B1	Accept $60^\circ$ , $1.05^\circ$
	Argument – $\frac{1}{3}$	2	
(ii)	$B^{=-2}$ $a = 2e^{\frac{j\pi}{4}}$ $arg b = \frac{\pi}{4} \pm \frac{\pi}{3}$ $b = 2e^{-\frac{j\pi}{12}}, 2e^{\frac{7j\pi}{12}}$	G2,1,0 B1 M1 A1ft <b>5</b>	G2: A in first quadrant, argument $\approx \frac{\pi}{4}$ B in second quadrant, same mod B' in fourth quadrant, same mod Symmetry G1: 3 points and at least 2 of above, or B, B' on axes, or BOB' straight line, or BOB' reflex Must be in required form (accept $r = 2$ , $\theta = \pi/4$ ) Rotate by adding (or subtracting) $\pi/3$ to (or from) argument. Must be $\pi/3$ Both. Ft value of r for a. Must be in required form, but don't penalise twice
(iii)	$z_{1}^{6} = \left(\sqrt{2}e^{\frac{j\pi}{3}}\right)^{6} = \left(\sqrt{2}\right)^{6} e^{2j\pi}$	M1	$\left(\sqrt{2}\right)^6 = 8 \text{ or } \frac{\pi}{3} \times 6 = 2\pi \text{ seen}$
	= 8	A1 (ag)	www
	Others are $re^{j\theta}$ where $r = \sqrt{2}$	M1	"Add" $\frac{\pi}{3}$ to argument more than once
	and $\theta = -\frac{2\pi}{3}, -\frac{\pi}{3}, 0, \frac{2\pi}{3}, \pi$	A1	Correct constant <i>r</i> and five values of $\theta$ . Accept $\theta$ in [0, $2\pi$ ] or in degrees
		G1 G1 6	6 points on vertices of regular hexagon Correctly positioned (2 roots on real axis). Ignore scales SC1 if G0 and 5 points correctly plotted
(iv)	$w = z_1 e^{-\frac{j\pi}{12}} = \sqrt{2} e^{\frac{j\pi}{3}} e^{-\frac{j\pi}{12}} = \sqrt{2} e^{\frac{j\pi}{4}}$	M1	$\arg w = \frac{\pi}{3} - \frac{\pi}{12}$
	$= \sqrt{2} \left( \cos \frac{\pi}{4} + j \sin \frac{\pi}{4} \right)$ $= 1 + j$	A1 G1 <b>3</b>	Or B2 Same modulus as $z_1$
( <b>v</b> )	$w^6 = \left(\sqrt{2}e^{\frac{j\pi}{4}}\right)^6 = 8e^{\frac{3j\pi}{2}}$	M1	Or $z^{6}e^{-\frac{j\pi}{2}} = 8e^{-\frac{j\pi}{2}}$
	=-8j	A1 2	cao. Evaluated

3(a)(i)	Region for (ii)		
		G1 G1 G1 <b>3</b>	<i>r</i> increasing with $\theta$ Correct for $0 \le \theta \le \pi/3$ (ignore extra) Gradient less than 1 at O
(ii)	Area = $\int_{0}^{\frac{\pi}{4}} \frac{1}{2}r^2 d\theta = \frac{1}{2}a^2 \int_{0}^{\frac{\pi}{4}} \tan^2 \theta d\theta$	M1	Integral expression involving $tan^2\theta$
	$=\frac{1}{2}a^{2}\int_{0}^{\frac{\pi}{4}}\sec^{2}\theta-1d\theta$	M1	Attempt to express $tan^2\theta$ in terms of $sec^2\theta$
	$=\frac{1}{2}a^{2}\left[\tan\theta-\theta\right]_{0}^{\frac{\pi}{4}}$	A1	$\tan \theta - \theta$ and limits 0, $\frac{\pi}{4}$
	$=\frac{1}{2}a^2\left(1-\frac{\pi}{4}\right)$	A1	A0 if e.g. triangle – this answer
		G1 5	Mark region on graph
(b)(i)	Characteristic equation is $(0.2 - \lambda)(0.7 - \lambda) - 0.24 = 0$ $\Rightarrow \lambda^{2} - 0.00 = 0.1 = 0$	M1	
	$ \Rightarrow  \lambda = 0.9\lambda  0.1 = 0 \Rightarrow  \lambda = 1, -0.1 $	A1	
	When $\lambda = 1$ , $\begin{pmatrix} -0.8 & 0.8 \\ 0.3 & -0.3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$	M1	$(\mathbf{M} - \lambda \mathbf{I})\mathbf{x} = \mathbf{x}$ M0 below
	$\Rightarrow -0.8x + 0.8y = 0, 0.5x - 0.5y = 0$ $\Rightarrow r - y = 0 \text{ aigenvector is } \begin{pmatrix} 1 \\ 0 \end{pmatrix} o e$		At least one equation relating x and y
	When $\lambda = -0.1$ , $\begin{pmatrix} 0.3 & 0.8 \\ 0.3 & 0.8 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$	AI	
	$\Rightarrow 0.3x + 0.8y = 0$	M1	At least one equation relating $x$ and $y$
	$\Rightarrow$ eigenvector is $\binom{8}{-3}$ o.e.	AI 6	
(ii)	$\mathbf{Q} = \begin{pmatrix} 1 & 8 \\ 1 & -3 \end{pmatrix}$	B1ft	B0 if <b>Q</b> is singular. Must label correctly
	$\mathbf{D} = \begin{pmatrix} 1 & 0 \\ 0 & -0.1 \end{pmatrix}$	B1ft B1	If order consistent. Dep on B1B1 earned
		5	1/

4 (a)(i)	$\cosh^2 x = \left[\frac{1}{2}(e^x + e^{-x})\right]^2 = \frac{1}{4}(e^{2x} + 2 + e^{-2x})$		
	$\sinh^2 x = \left[\frac{1}{2}\left(e^x - e^{-x}\right)\right]^2 = \frac{1}{4}\left(e^{2x} - 2 + e^{-2x}\right)$	M1	Both expressions (M0 if no "middle" term) and subtraction
	$\cosh^2 x - \sinh^2 x = \frac{1}{4}(2+2) = 1$	A1 (ag)	www
	$OR \cosh x + \sinh x = e^x$	2	
	$\cosh x - \sinh x = e^{-x}$		Both, and multiplication
	$\cosh^2 x - \sinh^2 x = e^x \times e^{-x} = 1 $ A1		Completion
(ii)(A)	$\cosh x = \sqrt{1 + \sinh^2 x} = \sqrt{1 + \tan^2 y}$	M1	Use of $\cosh^2 x = 1 + \sinh^2 x$ and $\sinh x = \tan y$
	$= \sec y$	A1	
	$\Rightarrow \tanh x = \frac{\sinh x}{\cosh x} = \frac{\tan y}{\sec y} = \sin y$	A1 (ag) 3	www
(ii)(B)	$\operatorname{arsinh} x = \ln(x + \sqrt{1 + x^2})$	M1	Attempt to use ln form of arsinh
	$\Rightarrow \operatorname{arsinh}(\tan y) = \ln(\tan y + \sqrt{1 + \tan^2 y})$	A1	
	$\Rightarrow x = \ln(\tan y + \sec y)$	A1 (ag) 3	www
	OP sinh $x = \tan y \Rightarrow e^{x} - e^{-x} - \tan y$		
	$ \Rightarrow e^{2x} 2e^{x} \tan y = 1 - 0 $		Amongo og gundantin and salva for X
	$\Rightarrow e^{-2e} \tan y - 1 = 0$		Arrange as quadratic and solve for <i>e</i>
	$\Rightarrow e - \tan y \pm \sqrt{\tan y + 1} \qquad \text{A1}$ $\Rightarrow r = \ln(\tan y + \sec y) \qquad \text{A1}$		
(b)(i)	$\frac{y}{y} = \operatorname{artanh} x \Rightarrow x = \tanh y$	M1	tanh y = and attempt to differentiate
	$\Rightarrow  \frac{dx}{dy} = \operatorname{sech}^2 y$		Or sech ² y $\frac{dy}{dx} = 1$
	$\Rightarrow  \frac{dy}{dx} = \frac{1}{\operatorname{sech}^2 y} = \frac{1}{1 - \tanh^2 y} = \frac{1}{1 - x^2}$	A1	Or B2 for $\frac{1}{1-x^2}$ www
	Integral = $\left[\operatorname{artanh} x\right]_{-\frac{1}{2}}^{\frac{1}{2}}$	M1	artanh or any tanh substitution
	$= 2 \operatorname{artanh} \frac{1}{2}$	A1 (ag) <b>4</b>	www
(ii)	$\frac{1}{1} = \frac{1}{(1-x)(1-x)} = \frac{A}{1} + \frac{B}{1-x}$		
(11)	$1-x^2$ $(1-x)(1+x)$ $1-x$ $1+x$		
	$\Rightarrow 1 = A(1+x) + B(1-x)$	M1	Correct form of partial fractions and attempt to evaluate constants
	$\Rightarrow A = \frac{1}{2}, B = \frac{1}{2}$	A1	
	$\Rightarrow \int \frac{1}{1-x^2} dx = \int \frac{\frac{1}{2}}{1-x} + \frac{\frac{1}{2}}{1+x} dx$	M1	Log integrals
	$= -\frac{1}{2}\ln 1-x  + \frac{1}{2}\ln 1+x  + c \text{ or } \frac{1}{2}\ln \frac{1+x}{1-x}  + c \text{ o.e.}$	A1 4	www. Condone omitted modulus signs and constant After 0 scored, SC1 for correct answer
(iii)	$\int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{1-x^2} dx = \left[-\frac{1}{2}\ln\left 1-x\right  + \frac{1}{2}\ln\left 1+x\right \right]_{-\frac{1}{2}}^{\frac{1}{2}} = \ln 3$	M1	Substitution of $\frac{1}{2}$ and $-\frac{1}{2}$ seen anywhere (or correct use of 0, $\frac{1}{2}$ )
	$\Rightarrow$ 2 artanh $\frac{1}{2} = \ln 3 \Rightarrow \operatorname{artanh} \frac{1}{2} = \frac{1}{2} \ln 3$	A1 (ag)	www
		2	18

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5 (i)	-2 y		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		2		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				
G1 G1 G1 G1Symmetry in horizontal axis (3, 0) to (0, 0) (0, 0) to (0, 1)(ii)(A) $a > 0.5$ $a < -0.5$ B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 <th></th> <th></th> <th></th> <th></th>				
(ii) (A) $a \ge 0.5$ a < -0.5 (ii) (B) Circle: <i>r</i> is constant (ii) (C) The two loops get closer together The shape becomes more nearly circular (ii) (D) Cusp a = -0.5 (iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ (iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ (iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ (iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ (iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ (iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ (iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ (iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ (iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ (iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ (iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ (iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ (iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ (iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ (iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ (iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ (iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ (iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ (iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ (iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ (iiii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ (iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ (iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ (iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ (iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ (iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ (iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ (iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ (iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ (iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ (iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ (iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ (iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ (iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ (iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ (iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ (iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ (iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ (iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ (iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ (iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ (iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ (iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ (iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ (iii) $1 + 2a \cos \theta =$			G1	Summetry in horizontal axis
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			G1	(3, 0) to $(0, 0)$
(ii)(A) $a > 0.5$ $a < -0.5$ BI B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 		-2	G1	(0, 0) to $(0, 1)$
(ii)(A) $a > 0.5$ $a < -0.5$ B1 B1 			3	
a < -0.5B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 <	(ii)(A)	<i>a</i> > 0.5	B1	
(ii)(B) Circle: r is constant (ii)(C) The two loops get closer together The shape becomes more nearly circular (ii)(D) Cusp a = -0.5 (iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ (iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ (iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ (iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ B1 Equation If $a > 0.5, -1 < -\frac{1}{2a} < 0$ and there are two values of $\theta$ in $[0, 2\pi],$ $\pi - \arccos\left(\frac{1}{2a}\right)$ and $\pi + \arccos\left(\frac{1}{2a}\right)$ These differ by 2 $\arccos\left(\frac{1}{2a}\right)$ arccos $\left(\frac{1}{2a}\right) = \arctan \sqrt{4a^2 - 1}$ Tangents are $y = x \sqrt{4a^2 - 1}$ $and y = -x \sqrt{4a^2 - 1}$ $\sqrt{4a^2 - 1}$ is real for $a > 0.5$ if $a > 0$ B1 B1 B1 B1 Equation B1 B1 Equation M1 Relating arccos to arctan by triangle or $\tan^2 \theta = \sec^2 \theta - 1$ A1 A1 A1 A1 Negative of above E1 B1 B1 B1 Equation B1 B1 Equation B1 B1 Equation B1 B1 Equation B1 B1 Equation B1 B1 Equation B1 B1 Equation B1 B1 Equation B1 B1 Equation B1 B1 Equation B1 B1 Equation B1 B1 Equation B1 B1 Equation B1 B1 Equation B1 B1 Equation B1 B1 Equation B1 B1 Equation B1 B1 Equation B1 B1 Equation B1 B1 Equation B1 B1 Equation B1 B1 Equation B1 B1 Equation B1 B1 Equation B1 B1 Equation B1 B1 Equation B1 B1 Equation B1 B1 Equation B1 B1 Equation B1 B1 B1 Equation B1 B1 B1 Equation B1 B1 B1 B1 Equation B1 B1 B1 B1 B1 B1 B1 B1 B1 B1		a < -0.5	B1	
(ii)(C) The two loops get closer together The shape becomes more nearly circular (ii)(D) Cusp $a = -0.5$ (iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ (iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ (iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ (iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ (iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ (iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ (iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ (iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ (iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ (iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ (iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ (iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ (iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ (iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ (iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ (iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ (iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ (iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ (iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ (iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ (iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ (iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ (iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ (iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ (iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ (iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ (iii) $1 + 2a \cos \theta = 0$ (iv) $1 + 2a \cos \theta$	(ii)(B)	Circle: r is constant	B1	Shape and reason
(ii) (D) Cusp $a = -0.5$ (iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ (iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ (iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ (iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ B1 Equation If $a > 0.5, -1 < -\frac{1}{2a} < 0$ and there are two values of $\theta$ in $[0, 2\pi]$ , $\pi - \arccos\left(\frac{1}{2a}\right)$ and $\pi + \arccos\left(\frac{1}{2a}\right)$ These differ by 2 $\arccos\left(\frac{1}{2a}\right)$ A1 (ag) $\operatorname{arccos}\left(\frac{1}{2a}\right) = \arctan\sqrt{4a^2 - 1}$ A1 (ag) $\operatorname{arccos}\left(\frac{1}{2a}\right) = \arctan\sqrt{4a^2 - 1}$ A1 Tangents are $y = x\sqrt{4a^2 - 1}$ A1 Tangents are $y = x\sqrt{4a^2 - 1}$ A1 A1 A1 A1 A1 A1 A1 A1 B1	( <b>n</b> )( <b>C</b> )	The share becomes more nearly circular	BI D1	
$\begin{array}{c} (\mathbf{i})(\mathbf{b}) & \stackrel{\text{desp}}{a = -0.5} & \stackrel{\text{D}}{\text{B1}} \\ \mathbf{a} = -0.5 & \stackrel{\text{D}}{\text{B1}} \\ \hline \mathbf{b} \\ \mathbf{a} = -0.5 & \stackrel{\text{D}}{\text{B1}} \\ \hline \mathbf{b} \\ \mathbf{b} \\ \mathbf{b} \\ \mathbf{b} \\ \mathbf{c} \\ \mathbf{b} \\ \mathbf{c} \\ $		Cusp	B1	
The end of the e	(II)(D)	a = -0.5	B1	
(iii) $1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ If $a > 0.5, -1 < -\frac{1}{2a} < 0$ and there are two values of $\theta$ in $[0, 2\pi]$ , $\pi - \arccos\left(\frac{1}{2a}\right)$ and $\pi + \arccos\left(\frac{1}{2a}\right)$ M1 These differ by $2 \arccos\left(\frac{1}{2a}\right)$ A1 (ag) $\arccos\left(\frac{1}{2a}\right) = \arctan\sqrt{4a^2 - 1}$ A1 Tangents are $y = x\sqrt{4a^2 - 1}$ A1 Tangents are $y = x\sqrt{4a^2 - 1}$ A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A			7	
$\begin{aligned} & 2a \\ & \text{If } a > 0.5, -1 < -\frac{1}{2a} < 0 \text{ and there are two values} \\ & \text{of } \theta \text{ in } [0, 2\pi], \\ & \pi - \arccos\left(\frac{1}{2a}\right) \text{ and } \pi + \arccos\left(\frac{1}{2a}\right) \\ & \text{These differ by } 2 \arccos\left(\frac{1}{2a}\right) \\ & \text{arccos}\left(\frac{1}{2a}\right) = \arctan\sqrt{4a^2 - 1} \\ & \text{Tangents are } y = x\sqrt{4a^2 - 1} \\ & \text{and } y = -x\sqrt{4a^2 - 1} \\ & \sqrt{4a^2 - 1} \text{ is real for } a > 0.5 \text{ if } a > 0 \end{aligned} $ $\begin{aligned} & \text{M1} \\ & \text{A1 (ag)} \\ \\ & $	(iii)	$1 + 2a\cos\theta = 0 \Rightarrow \cos\theta = -\frac{1}{2}$	B1	Equation
If $a > 0.5, -1 < -\frac{1}{2a} < 0$ and there are two values of $\theta$ in $[0, 2\pi]$ , $\pi - \arccos\left(\frac{1}{2a}\right)$ and $\pi + \arccos\left(\frac{1}{2a}\right)$ M1 These differ by 2 $\arccos\left(\frac{1}{2a}\right)$ A1 (ag) $\arccos\left(\frac{1}{2a}\right) = \arctan\sqrt{4a^2 - 1}$ A1 Tangents are $y = x\sqrt{4a^2 - 1}$ A1 and $y = -x\sqrt{4a^2 - 1}$ A1 $\sqrt{4a^2 - 1}$ is real for $a > 0.5$ if $a > 0$ E1 <b>8 18</b>	、 <i>,</i>	2 <i>a</i>		1
of $\theta$ in $[0, 2\pi]$ , $\pi - \arccos\left(\frac{1}{2a}\right)$ and $\pi + \arccos\left(\frac{1}{2a}\right)$ These differ by 2 $\arccos\left(\frac{1}{2a}\right)$ $\operatorname{arccos}\left(\frac{1}{2a}\right) = \arctan\sqrt{4a^2 - 1}$ Tangents are $y = x\sqrt{4a^2 - 1}$ $\operatorname{and} y = -x\sqrt{4a^2 - 1}$ $\sqrt{4a^2 - 1}$ is real for $a > 0.5$ if $a > 0$ M1 A1 (ag) M1 A1 (ag) M1 A1 (ag) M1 A1 A1 A1 A1 A1 A1 A1 A1 Belating arccos to arctan by triangle or $\tan^2\theta = \sec^2\theta - 1$ A1 A1 A1 A1 Belating arccos to arctan by triangle or $\tan^2\theta = \sec^2\theta - 1$ A1 A1 A1 A1 A1 A1 A1 A1 A1 A1		If $a > 0.5$ , $-1 < -\frac{1}{2a} < 0$ and there are two values		
$\pi - \arccos\left(\frac{1}{2a}\right) \text{ and } \pi + \arccos\left(\frac{1}{2a}\right) \qquad M1$ These differ by 2 $\operatorname{arccos}\left(\frac{1}{2a}\right)$ $\operatorname{arccos}\left(\frac{1}{2a}\right) = \arctan\sqrt{4a^2 - 1}$ $\operatorname{Tangents} \operatorname{are} y = x\sqrt{4a^2 - 1}$ $\operatorname{and} y = -x\sqrt{4a^2 - 1}$ $\sqrt{4a^2 - 1} \text{ is real for } a > 0.5 \text{ if } a > 0$ $M1$ $\operatorname{Relating arccos to arctan by triangle or tan2\theta = \sec2\theta - 1$ $\operatorname{A1}$ $A$		of $\theta$ in $[0, 2\pi]$ ,		
These differ by 2 $\arccos\left(\frac{1}{2a}\right)$ arccos $\left(\frac{1}{2a}\right)$ = $\arctan\sqrt{4a^2 - 1}$ Tangents are $y = x\sqrt{4a^2 - 1}$ and $y = -x\sqrt{4a^2 - 1}$ $\sqrt{4a^2 - 1}$ is real for $a > 0.5$ if $a > 0$ A1 (ag) M1 A1 (ag) M1 A1 A1 A1 A1 A1 A1 A1 Belating arccos to arctan by triangle or $\tan^2\theta = \sec^2\theta - 1$ A1ft E1 <b>8</b> <b>18</b>		$\pi - \arccos\left(\frac{1}{2}\right)$ and $\pi + \arccos\left(\frac{1}{2}\right)$	M1	
These differ by 2 $\operatorname{arccos}\left(\frac{1}{2a}\right)$ A1 (ag) $\operatorname{arccos}\left(\frac{1}{2a}\right) = \arctan\sqrt{4a^2 - 1}$ M1Relating $\operatorname{arccos}$ to $\operatorname{arctan}$ by triangle or $\tan^2\theta = \sec^2\theta - 1$ Tangents are $y = x\sqrt{4a^2 - 1}$ A1 $\operatorname{and} y = -x\sqrt{4a^2 - 1}$ A1ft $\sqrt{4a^2 - 1}$ is real for $a > 0.5$ if $a > 0$ E1818		$(2a)^{aaa}$	1411	
$arccos\left(\frac{1}{2a}\right) = \arctan \sqrt{4a^2 - 1}$ $Tangents are y = x\sqrt{4a^2 - 1} and y = -x\sqrt{4a^2 - 1} \sqrt{4a^2 - 1} is real for a > 0.5 if a > 0 A1 A1 A1 A1 A1 A1 A1 Belating arccos to arctan by triangle or tan2θ = sec2θ - 1 A1 A1 Belating arccos to arctan by triangle or tan2θ = sec2θ - 1 A1 A1 Belating arccos to arctan by triangle or tan2θ = sec2θ - 1 A1 A1 Belating arccos to arctan by triangle or tan2θ = sec2θ - 1 A1 A1 A1 Belating arccos to arctan by triangle or tan2θ = sec2θ - 1 A1$		These differ by 2 $\arccos\left(\frac{1}{2}\right)$	A1 (ag)	
$\operatorname{arccos}\left(\frac{1}{2a}\right) = \arctan \sqrt{4a^2 - 1}$ $\operatorname{Tangents} \operatorname{are} y = x\sqrt{4a^2 - 1}$ $\operatorname{and} y = -x\sqrt{4a^2 - 1}$ $\sqrt{4a^2 - 1} \text{ is real for } a > 0.5 \text{ if } a > 0$ $\operatorname{Relating arccos to arctan by triangle or \tan^2\theta = \sec^2\theta - 1 \operatorname{A1} \operatorname{A1} \operatorname{A1} \operatorname{A1} \operatorname{B1} \operatorname{B1} \operatorname{B2} \operatorname{B2} \operatorname{B2} \operatorname{B2} \operatorname{B2}$		(2a)	M1	Poloting proposite croter by triangle
$\begin{array}{c c} & 1 & 1 & 1 & 1 \\ \hline (2a) & a & b & a & 1 \\ \hline (2a) & a & b & a & 1 \\ \hline (2a) & a & b & a & 1 \\ \hline (2a) & a & b & a & 1 \\ \hline (2a) & a & b & a & b & a & a \\ \hline (2a) & a & b & a & b & a & b & a \\ \hline (2a) & a & b & a & b & a & b & a \\ \hline (2a) & a & b & a & b & a & b & a \\ \hline (2a) & a & b & a & b & a & b & a \\ \hline (2a) & a & b & a & b & a & b & a \\ \hline (2a) & a & b & a & b & a & b & a \\ \hline (2a) & a & b & a & b & a & b & a \\ \hline (2a) & a & b & a & b & a & b & a \\ \hline (2a) & a & b & a & b & a & b & a \\ \hline (2a) & a & b & a & b & a & b & a \\ \hline (2a) & a & b & a & b & a & b & a \\ \hline (2a) & a & b & a & b & a & b & a \\ \hline (2a) & a & b & a & b & a & b & a \\ \hline (2a) & a & b & a & b & a & b & a \\ \hline (2a) & a & b & a & b & a & b & a \\ \hline (2a) & a & b & a & b & a & b & a \\ \hline (2a) & a & b & a & b & a & b & a \\ \hline (2a) & a & b & a & b & a & b & a \\ \hline (2a) & a & b & a & b & a & b & a \\ \hline (2a) & a & b & a & b & a & b \\ \hline (2a) & a & b & a & b & a & b \\ \hline (2a) & a & b & a & b & a & b \\ \hline (2a) & a & b & a & b & a & b \\ \hline (2a) & a & b & a & b & a & b \\ \hline (2a) & a & b & a & b & a & b \\ \hline (2a) & a & b & a & b & a & b \\ \hline (2a) & a & b & a & b & a & b \\ \hline (2a) & a & b & a & b & a & b \\ \hline (2a) & a & b & a & b & a & b \\ \hline (2a) & a & b & a & b & a & b \\ \hline (2a) & a & b & a & b & a & b \\ \hline (2a) & a & b & a & b & a & b \\ \hline (2a) & a & b & a & b & a & b \\ \hline (2a) & a & b & a & b & a & b \\ \hline (2a) & a & b & a & b & a & b \\ \hline (2a) & a & b & a & b & a & b \\ \hline (2a) & a & b & a & b & a & b \\ \hline (2a) & a & b & a & b & a & b \\ \hline (2a) & a & b & a & b & a & b \\ \hline (2a) & a & b & a & b & a & b \\ \hline (2a) & a & b & a & b & a & b & a \\ \hline (2a) & a & b & a & b & a & b & a \\ \hline (2a) & a & b & a & b & a & b & a & b \\ \hline (2a) & a & b & a & b & a & b \\ \hline (2a) & a & b & a & b & a & b \\ \hline (2a) & a & b & a & b & a & b \\ \hline (2a) & a & b & a & b & a & b \\ \hline (2a) & a & b & a & b & a & b \\ \hline (2a) & a & b & a & b & a & b \\ \hline (2a) & a & b & a & b & a & b \\ \hline (2a) & a & b & a & b & a & b \\ \hline (2a) & a & b & a & b & a & b \\ \hline (2a) & a & b & a & b & a & b \\ \hline (2a) & a & b & a & b & a & b \\ \hline (2a) & a &$		$\arccos\left(\frac{1}{2}\right) = \arctan\sqrt{4a^2 - 1}$	141 1	or $\tan^2 \theta = \sec^2 \theta - 1$
Tangents are $y = x\sqrt{4a^2 - 1}$ A1and $y = -x\sqrt{4a^2 - 1}$ A1ft $\sqrt{4a^2 - 1}$ is real for $a > 0.5$ if $a > 0$ E1818		(2a)	A1	
and $y = -x\sqrt{4a^2 - 1}$ $\sqrt{4a^2 - 1}$ is real for $a > 0.5$ if $a > 0$ <b>8 18 18</b>		Tangents are $y = x\sqrt{4a^2 - 1}$	A1	
$\sqrt{4a^2 - 1}$ is real for $a > 0.5$ if $a > 0$ <b>E</b> 1 <b>8 18</b>		and $y = -x\sqrt{4a^2 - 1}$	A1ft	Negative of above
8		$\sqrt{4a^2-1}$ is real for $a > 0.5$ if $a > 0$	E1	
			8	18

### **4758 Differential Equations**

1(3)	3 2 2 0 0	D1		
1(1)	$\alpha^{2} + 2\alpha^{2} - \alpha - 2 = 0$	RI		
	$(-2)^{2} + 2(-2)^{2} - (-2) - 2 = 0$	El	Or factorise	
	$(\alpha+2)(\alpha^2-1)=0$	M1	Solve	
	$\alpha = -2, \pm 1$	A1		
	$y = Ae^{-2x} + Be^{-x} + Ce^x$	M1	Attempt CF	
		F1	CF for their three roots	
				6
(ii)	PI $y = \frac{2}{-2} = -1$	M1	Constant PI	
		A1	Correct PI	
	GS $v = -1 + Ae^{-2x} + Be^{-x} + Ce^{x}$	F1	GS = PI + CF	
				3
(iii)	$e^x \to \infty$ as $x \to \infty$	M1	Consider as $x \to \infty$	
	so finite limit $\Rightarrow C = 0$	F1	Must be shown, not just stated	
	$x = 0, y = 0 \Longrightarrow 0 = -1 + A + B$	M1	Use condition	
	$x = \ln 2, y = 0 \Longrightarrow 0 = -1 + \frac{1}{4}A + \frac{1}{2}B$	M1	Use condition	
	Solving gives $A = -2, B = 3$	M1		
	$y = -2e^{-2x} + 3e^{-x} - 1$	E1	Convincingly shown	
				6
(iv)	$y = -(2e^{-x} - 1)(e^{-x} - 1)$			
	$y = 0 \Leftrightarrow e^{-x} = \frac{1}{2} \text{ or } 1$	M1	Solve	
	$\Leftrightarrow x = \ln 2 \text{ or } 0$	E1	Convincingly show no other roots	
	$dy = (1 - 2x)^{-2x} + (1 - 2x)^{-x} + (1 - 2$			
	$\frac{d}{dx} = 4e - 3e = e (4e - 3)$			
	$\frac{dy}{dt} = 0 \iff e^{-x} = \frac{3}{4} \text{ as } e^{-x} \neq 0$	M1	Solve	
	dx 4			
	$\Leftrightarrow x = \ln \frac{4}{3}$	E1	Show only one root	
	Stationary point at $(\ln \frac{4}{3}, \frac{1}{8})$	A1		
				5
(v)	<i>Y</i> ▲ (In(4/3) 1/8)	B1	Through $(0, 0)$	
		RI	I nrough $(\ln 2, 0)$ Stationary point at their answer to	
	×	B1	(iv)	
	-1	B1	$y \rightarrow -1 \text{ as } x \rightarrow \infty$	
				4
			·	4

2(i)	$\frac{dy}{dx} + y \tan x = x \cos x$	M1	Rearrange	
	$I = \exp \int \tan x dx$	M1	Attempt IF	
	$= \exp \ln \sec x$	A1	Correct IF	
	$= \sec x$	A1	Simplified	
	$\frac{d}{dx}(y\sec x) = x$	M1	Multiply and recognise derivative	
	$y \sec x = \frac{1}{2}x^2 + A$	M1	Integrate	
	. 2	A1	RHS	
	$y = (\frac{1}{2}x^2 + A)\cos x$	F1	Divide by their IF (must divide constant)	
	$x = 0, y = 1 \Longrightarrow A = 1$	M1	Use condition	
	$y = (\frac{1}{2}x^2 + 1)\cos x$	F1	Follow their non-trivial GS	
				10
(ii)	^y 1 <b>↑</b>	B1	Shape correct for $-\frac{1}{2}\pi < x < \frac{1}{2}\pi$	
		B1	Through (0,1)	
	<u> </u>			
	X I			2
(iii)	$y' = \frac{x \cos x \sin x - y \sin x}{\cos x}$	M1	Rearrange	2
	v'(0) = 0	<b>R</b> 1		
	v(0,1) = 1	B1		
	v'(0.1) = -0.090351	B1		
	$y(0.2) = 1 + 0.1 \times -0.090351 = 0.990965$	M1	Use of algorithm for second step	
	• • •	A1	3sf or better	
				6
(iv)	$I = \sec x$	M1	Same IF as in (i) or attempt from scratch	
	$\frac{d}{dx}(y\sec x) = x\tan x$	A1		
	$[y \sec x]_{x=0}^{x=0.2} = \int_0^{0.2} x \tan x dx$	M1	Integrate	
		A1	Accept no limits	
	$y(0.2)\sec(0.2) - 1 \times \sec 0 \approx 0.002688$	M1	Substitute limits (both sides)	
	$\Rightarrow y(0.2) \approx 0.982701$	A1	Awrt 0.983	
				6

	dy			
3(i)	$60v\frac{dv}{dx} = 60g - \frac{1}{4}v^2$	M1	N2L	
		A1	Correct N2L equation	
	$\frac{v}{240g - v^2} \frac{dv}{dx} = \frac{1}{240}$	E1	Convincingly shown	
	$\int \frac{v}{240g - v^2} dv = \int \frac{1}{240} dx$	M1	Integrate	
	$-\frac{1}{2}\ln 240g - v^2  = \frac{1}{240}x + c$	A1	$\ln \left  240g - v^2 \right $ seen	
		A1	RHS	
	$240g - v^2 = Ae^{\frac{x}{120}}$	M1	with constant	
	$x = 0, v = 0 \Longrightarrow A = 240g$	M1	Use condition	
	$v^2 = 240g(1 - e^{-\frac{x}{120}})$	A1	Cao	9
(ii)	$x = 10 \Rightarrow v = \sqrt{240g(1 - e^{-\frac{10}{120}})} \approx 13.71$	E1	Convincingly shown	1
(iii)	$60\frac{dv}{dt} = 60g - 60v - 90g$	M1	N2L	
	$\frac{dv}{dt} = -\frac{1}{2}g - v \text{ or } \frac{dv}{dt} + v = -\frac{1}{2}g$	A1	Correct DE	
	Solving DE (three alternative methods):			
	$\int \frac{dv}{v + \frac{1}{2}g} = \int -dt$	M1	Separate	
	$\ln\left v + \frac{1}{2}g\right  = -t + k$	M1	Integrate	
		A1	LHS	
	$v + \frac{1}{2}g = Ae^{-t}$	M1	Rearrange, dealing properly with constant	
	or $\alpha + 1 = 0 \Rightarrow \alpha = -1$		M1 Solve auxiliary equation	
	$CF Ae^{-t}$		<i>M1</i> CF for their root	
	$PI - \frac{1}{2}g$		<i>M1 Attempt to find constant PI</i>	
	$v = Ae^{-t} - \frac{1}{2}g$		A1 All correct	
	0ľ		M1 Attemnt integrating	
	$I = e^t$		factor	
	$\frac{d}{dt}(e^t v) = -\frac{1}{2}ge^t$		M1 Multiply	
	$e^t v = -\frac{1}{2}ge^t + A$		M1 Integrate	
	$v = Ae^{-t} - \frac{1}{2}g$		A1 All correct	
	$v = 13.71, t = 0 \Rightarrow 13.71 = A - \frac{1}{2}g \Rightarrow A = 18.61$	M1	Use condition	
	$v = 18.61e^{-t} - 4.9$	E1	Complete argument	8

(iv)	At greatest depth, $v = 0$	M1	Set to so	velocity to zero and attempt blve	
	$\Rightarrow e^{-t} = \frac{4.9}{18.61} \Rightarrow t = 1.3345$	A1			
	Depth = $\int_0^{1.3345} (18.61e^{-t} - 4.9)dt$	M1	Inte	grate	
	$= \left[ -18.61e^{-t} - 4.9t \right]_{0}^{1.3345}$	A1	Igno	ore limits	
	L	M1	Use	limits (or evaluate constant	
	= 7 17 m	Δ1	and $\Delta 11$	substitute for t)	6
l	- /.1 / III	AI	ЛП	concer	0
4(i)	-3x - y + 7 = 0 $x = 1$		B1		
4(1)	$2x - y + 2 = 0  \int  \bigcirc  y = 4$		B1		
					2
(11)	x = -3x - y		M1	Differentiate	
	= -3x - (2x - y + 2)		MI M1	Substitute for $y$	
	y = -3x + 7 - x		M1	y in terms of $x, xSubstitute for y$	
	$x = -5x - 2x - 5x + 7 - x - 2$ $\Rightarrow \ddot{r} + 4\dot{r} + 5r - 5$		F1	Complete argument	5
(iii)	$\frac{2}{\alpha^2 + 4\alpha + 5} = 0$		M1	Auxiliary equation	5
()	$\Rightarrow \alpha = -2 \pm i$		A1		
			M1	CF for complex roots	
	$CF e^{-2t} (A\cos t + B\sin t)$		F1	CF for their roots	
	PI $x = \frac{5}{5} = 1$		B1		
	GS $x=1+e^{-2t}(A\cos t+B\sin t)$		F1	GS = PI + CF with two arbitrary constants	
					6
(iv)	$y = -3x + 7 - \dot{x}$		M1	y in terms of $x, \dot{x}$	
	$\dot{x} = -2e^{-2t}(A\cos t + B\sin t) + e^{-2t}(-A\sin t + B\cos t)$	(st)	M1	Differentiate their <i>x</i> (product rule)	
	$y = 4 + e^{-2t} ((A - B)\sin t - (A + B)\cos t)$		A1	Constants must correspond	3
(v)	1 + A = 4		M1	Use condition on <i>x</i>	
	4 - A - B = 0 4 - 2, P - 1		MI	Use condition on y	
	x = 3, b = 1 $x = 1 + e^{-2t}(3\cos t + \sin t)$				
	$v = 4 + e^{-2t} (2 \sin t - 4 \cos t)$		Δ1	Both solutions	3
(vi)	<b>A</b>		B1	(0 4)	5
(1)	4		B1	$\rightarrow 1$	
				<i>/</i>	
			Bl	(0,0)	
			ы	$\rightarrow$ 4	
	As the solutions approach the asymptotes, the		D1	Must rafar to andianta	
	gradients approach zero.		Ы	whust refer to gradients	
					5

### 4761 Mechanics 1

Q 1		Mark	Comment	Sub
(i)	$6 \text{ m s}^{-1}$ 4 m s ⁻²	B1 B1	Neglect units. Neglect units.	2
(ii)	$v(5) = 6 + 4 \times 5 = 26$ $s(5) = 6 \times 5 + 0.5 \times 4 \times 25 = 80$ so 80 m	B1 M1 A1	Or equiv. FT (i) and <b>their</b> $v(5)$ where necessary. cao	3
(iii)	distance is 80 + $26 \times (15-5) + 0.5 \times 3 \times (15-5)^2$ = 490 m	M1 M1 A1	Their 80 + attempt at distance with $a = 3$ Appropriate <i>uvast</i> . Allow $t = 15$ . FT <b>their</b> v(5). cao	3
		8		

Q 2		Mark	Comment	Sub
(i)		M1	Recognising that areas under graph represent changes in velocity in (i) or (ii) or equivalent <i>uvast.</i>	
	When $t = 2$ , velocity is $6 + 4 \times 2 = 14$	A1		2
(ii)	Require velocity of $-6$ so must inc by $-20$ $-8 \times (t-2) = -20$ so $t = 4.5$	M1 F1	FT $\pm$ (6 + <b>their</b> 14) used in any attempt at area/ <i>uvast</i> FT <b>their</b> 14 [Award SC2 for 4.5 WW and SC1 for 2.5 WW]	2
		4		

Q 3		Mark	Comment	Sub
(i)	$\mathbf{F} + \begin{pmatrix} -4\\ 8 \end{pmatrix} = 6 \begin{pmatrix} 2\\ 3 \end{pmatrix}$	M1	N2L. $F = ma$ . All forces present	
		B1 B1	Addition to get resultant. May be implied. For $\mathbf{F} \pm \begin{pmatrix} -4 \\ 8 \end{pmatrix} = 6 \begin{pmatrix} 2 \\ 3 \end{pmatrix}$ .	
	$\mathbf{F} = \begin{pmatrix} 16\\10 \end{pmatrix}$	A1	SC4 for $\mathbf{F} = \begin{pmatrix} 16\\ 10 \end{pmatrix}$ WW. If magnitude is given, final mark is lost unless vector answer is clearly intended.	
				4
(ii)	$\arctan\left(\frac{16}{10}\right)$	M1	Accept equivalent and FT <b>their F</b> only. Do not accept wrong angle. Accept 360 - $\arctan\left(\frac{16}{10}\right)$	
	57.994 so 58.0° (3 s. f.)	A1	cao. Accept 302° (3 s.f.)	2
		6		
Q4		Mark	Comment	Sub
----	-----------------------------------------------------	----------	-------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-----
	either			
	We need $3.675 = 9.8t - 4.9t^2$	*M1	Equating given expression or <b>their</b> attempt at y to $\pm 3.675$ . If <b>they</b> attempt y, allow sign errors, $g = 9.81$ etc. and $u = 35$ .	
	Solving $4t^2 - 8t + 3 = 0$	M1*	Dependent. Any method of solution of a 3 term quadratic.	
	gives $t = 0.5$ or $t = 1.5$	A1 F1	cao. Accept only the larger root given Both roots shown and larger chosen provided both +ve. Dependent on 1 st M1. [Award M1 M1 A1 for 1.5 seen WW]	
	or	M1	Complete method for total time from motion in separate parts. Allow sign errors, $g = 9.81$ etc. Allow $u = 35$ initially only.	
	Time to greatest height			
	$0 = 35 \times 0.28 - 9.8t$ so $t = 1$	A1	Time for 1 st part	
	Time to drop is 0.5	A1	Time for 2 nd part	
	total is 1.5 s	A1	cao	
	then			
	Horiz distance is $35 \times 0.96t$	B1	Use of $x = u \cos \alpha t$ . May be implied.	
	So distance is $35 \times 0.96 \times 1.5 = 50.4$ m	F1	FT <b>their</b> quoted <i>t</i> provided it is positive.	
				6
		6		

05		Mark	Comment	Sub
(i)	For the parcel	M1	Applying N2L to the parcel. Correct mass. Allow $F = mga$ . Condone missing force but do not allow spurious forces	
	↑ N2L 55 – 5g = 5a a = 1.2 so 1.2 m s ⁻²	A1 A1	Allow only sign error(s). Allow –1.2 only if sign convention is clear.	3
(ii)	$R - 80g = 80 \times 1.2$ or $R - 75g - 55 = 75 \times 1.2$ R = 880 so 880 N	M1 A1	N2L. Must have correct mass. Allow only sign errors. FT <b>their</b> <i>a</i> cao [NB beware spurious methods giving 880 N]	2
		5		

Q6		Mark	Comment	Sub
	Method 1			
	$\uparrow v_{\rm A} = 29.4 - 9.8T \qquad \downarrow v_{\rm B} = 9.8T$	M1	Either attempted. Allow sign errors and $g = 9.81$	
		A 1	A1 Both correct	
	For same speed $20.4 - 0.8T - 0.8T$	M1	Attempt to equate $A$ ccept sign errors and $T = 1.5$	
	101  same spece  29.4 - 9.01 - 9.01	1011	substituted in both.	
	so $T = 1.5$	E1	If 2 subs there must be a statement about equality	
	and $V = 14.7$	F1	FT T or V, whichever is found second	
	$H = 29.4 \times 1.5 - 0.5 \times 9.8 \times 1.5^{2}$	M1	Sum of the distance travelled by each attempted	
	$+ 0.5 \times 9.8 \times 1.5^{2}$			
	= 44.1	A1	cao	
	Mathad 2			
	$V_{2}^{2} = 20.4^{2} = 20$ 8 20 8( <i>H</i> )	M1	Attempts of $\mathbb{R}^2$ for a statement of a subscription of $\mathbb{R}^2$	
	$V = 29.4 - 2 \times 9.8 \times x = 2 \times 9.8 \times (H - x)$	1011	Attempts at V for each particle equated. Allow	
			sign errors, 9.81 etc	
			Allow $h_1$ , $h_2$ without $h_1 = H - h_2$	
		B1	Both correct. Require $h_1 = H - h_2$ but not an equation	
	$29 A^2 - 19 6H so H = AA 1$	A1	cao	
	$29.4^{\circ} = 19.011 \text{ so } 11^{\circ} = 44.1$ Relative velocity is 29.4 so	M1	Any method that leads to $T$ or $V$	
	AA 1	F1	Any method that leads to I of V	
	$T = \frac{44.1}{20.4}$			
	$\frac{29.4}{1000}$	M1	Any method loading to the other veriable	
	$V = 0 + 0.8 \times 1.5 = 14.7$	F1	Any memore reading to the other variable	
	$v = 0 + 9.8 \times 1.3 - 14.7$	ГІ	Other approaches possible. If 'alever' wave seen	
			reward according to weighting above	
			reward according to weighting above.	7
		7		,

Q7		Mark	Comment	Sub
(i)	Diagram	B1 B1	Weight, friction and 121 N present with arrows. All forces present with suitable labels. Accept <i>W</i> , <i>mg</i> , 100g and 980. No extra forces.	
	Resolve $\rightarrow 121\cos 34 - F = 0$ F = 100.313 so 100 N (3 s. f.)	M1 E1	Resolving horiz. Accept $s \leftrightarrow c$ . Some evidence required for the <i>show</i> , e.g. at least 4 figures. Accept $\pm$ .	
	Resolve $\uparrow$ R+121sin 34-980 = 0 R = 912.337 so 912 N (3 s. f.)	M1 B1 A1	Resolve vert. Accept $s \leftrightarrow c$ and sign errors. All correct	7
(ii)	It will continue to move at a constant speed of $0.5 \text{ m s}^{-1}$ .	E1 E1	Accept no reference to direction Accept no reference to direction [Do not isw: conflicting statements get zero]	2
(iii)	Using N2L horizontally $155\cos 34 - 95 = 100a$	M1	Use of N2L. Allow $F = mga$ , F omitted and 155 not resolved.	
	a = 0.335008 so 0.335 m s ⁻² (3 s. f.)	A1 A1	Use of $F = ma$ with resistance and $T$ resolved. Allow $s \leftrightarrow c$ and signs as the <b>only</b> errors.	3
(iv)	$a = 5 \div 2 = 2.5$ N2L down the slope	M1 A1	Attempt to find <i>a</i> from information	
	$100g\sin 26 - F = 100 \times 2.5$	M1	F = ma using <b>their</b> "new" <i>a</i> . All forces present. No extras. Require attempt at wt cpt. Allow $s \leftrightarrow c$ and sign errors.	
		B1	Weight term resolved correctly, seen in an equn or on a diagram.	
	<i>F</i> = 179.603 so 180 N (3 s. f.)	A1	cao. Accept – 180 N if consistent with direction of $F$ on their diagram	
		17		5
		± /		1

Q8		Mark	Comment	Sub
(i)	$v_x = 8 - 4t$ $v_x = 0 \Leftrightarrow t = 2$ so at $t = 2$	M1 A1 F1	either Differentiating or Finding 'u' and 'a' from x and use of $v = u + at$ FT their $v_x = 0$	3
(ii)	$y = \int (3t^2 - 8t + 4) dt$ = $t^3 - 4t^2 + 4t + c$ y = 3 when $t = 1$ so $3 = 1 - 4 + 4 + c$ so $c = 3 - 1 = 2$ and $y = t^3 - 4t^2 + 4t + 2$	M1 A1 M1 E1	Integrating $v_y$ with at least one correct integrated term. All correct. Accept no arbitrary constant. Clear evidence Clearly shown and stated	4
(iii)	We need $x = 0$ so $8t - 2t^2 = 0$ so $t = 0$ or $t = 4$ t = 0 gives $y = 2$ so 2 m $t = 4$ gives $y = 4^3 - 4^3 + 16 + 2 = 18$ so 18 m	M1 A1 A1 A1	May be implied. Must have both Condone 2 <b>j</b> Condone 18 <b>j</b>	4
(iv)	We need $v_x = v_y = 0$	M1	either Recognises $v_x = 0$ when $t = 2$ or Finds time(s) when $v_y = 0$	
	From above, $v_x = 0$ only when $t = 2$ so evaluate $v_y(2)$ $v_y(2) = 0$ [ $(t-2)$ is a factor] so yes only	M1	or States or implies $v_x = v_y = 0$ Considers $v_x = 0$ and $v_y = 0$ with their time(s)	
	at $t = 2$	A1	t = 2 recognised as only value (accept as evidence only t = 2 used below). For the last 2 marks, no credit lost for reference to $t = \frac{2}{3}$	
	At $t = 2$ , the position is (8, 2) Distance is $\sqrt{8^2 + 2^2} = \sqrt{68}$ m (8.25 3 s.f.)	B1 B1	May be implied FT from <b>their</b> position. Accept one position followed through correctly.	E
(v)	t = 0, 1 give (0, 2) and (6, 3)	B1	At least one value $0 \le t < 2$ correctly calc. This need not be plotted	5
		B1	Must be <i>x-y</i> curve. Accept sketch. Ignore curve outside interval for <i>t</i> . Accept unlabelled axes. Condone use of line segments.	
		B1	At least three correct points <b>used</b> in <i>x</i> - <i>y</i> graph or sketch. General shape correct. Do not condone use of line segments.	3
		19		5

## 4762 Mechanics 2

Q 1		Mark		
(i)	either			
	<b>A A B</b>	M1	Use of $I = Ft$	
	$m \times 2u = 5F$	Al	Must have reference to direction. A court diagram	
	so $F = 0.4mu$ in direction of the velocity	AI	Must have reference to direction. Accept diagram.	
		M1	Use of <i>suvat</i> and N2L	
	$a = \frac{2u}{5}$	A1	May be implied	
	so $F = 0.4mu$ in direction of the velocity	A1	Must have reference to direction Accept diagram	
	so i o mu il direction of the velocity			3
(ii)		2.01		
		MI	For 2 equins considering PCLM, NEL or Energy	
	$PCLM \rightarrow 2um + 3um = mv_p + 3mv_Q$			
	$\text{NEL} \rightarrow v_Q - v_P = 2u - u = u$			
	Energy $\frac{1}{2}m \times (2u)^2 + \frac{1}{2}(3m) \times u^2$			
	$=\frac{1}{2}m \times v_{\rm P}^{2} + \frac{1}{2}(3m) \times v_{\rm O}^{2}$			
	~	A1	One correct equation	
		A1	Second correct equation	
	Solving to get both velocities	M1	Dep on 1 st M1. Solving pair of equations.	
	$v_{Q} = \frac{3u}{2}$	E1	If Energy equation used, allow 2 nd root discarded	
	2		without comment.	
	$v - \frac{u}{2}$	Δ1		
	$v_P = 2$	711		
			[If AG subst in one equation to find other velocity,	
			and no more, max SC3	6
(iii)	either			0
	After collision with barrier $v = \frac{3eu}{4}$	B1	Accept no direction indicated	
	$v_Q = \frac{1}{2}$	DI		
	2			
	so $\rightarrow m \frac{u}{2} - 3m \frac{3eu}{2} = -4m \frac{u}{4}$	M1	PCLM	
		A1	LHS Allow sign errors. Allow use of $3mv_{0}$ .	
		A1	RHS Allow sign errors	
	1	. 1		
	so $e = \frac{1}{3}$	AI		
	At the barrier the impulse on $\Omega$ is given by			
	$(3u \ 1 \ 3u)$			
	$\rightarrow 3m\left(-\frac{3m}{2}\times\frac{1}{3}-\frac{3m}{2}\right)$	M1	Impulse is $m(v-u)$	
		F1	$\pm \frac{3u}{2} \times \frac{1}{2}$	
		<b>.</b> .	2 3	
	so impulse on Q is $-6mu \rightarrow$	F1	Allow $\pm$ and direction not clear. FT only <i>e</i> .	
	so impulse on the barrier is $6mu \rightarrow$	Al	cao. Direction must be clear. Units not required.	9
		18		,

Q 1	continued	mark		sub
(iii)	or 3eu			
	After collision with barrier $v_q = \frac{1}{2}$	B1		
	Impulse – momentum overall for Q			
	$\rightarrow 2mu + 3mu + I = -4m \times \frac{u}{4}$	M1	All terms present	
	I = -6mu	A1 A1	All correct except for sign errors	
	so impulse of $6mu$ on the barrier $\rightarrow$	A1	Direction must be clear. Units not required.	
	Consider impact of Q with the barrier to			
	give speed $V_{\rm Q}$ after impact			
	$\rightarrow \frac{3u}{2} \times 3m - 6mu = 3mv_Q$	M1	Attempt to use I - M	
		F1		
	so $v_Q = -\frac{u}{2}$	F1		
	$e = \frac{u}{2} \div \frac{3u}{2} = \frac{1}{3}$	A1	сао	
				9

Q 2		Mark		Sub
(i)				
	$R = 80g\cos\theta$ or $784\cos\theta$	B1	Seen	
	$F_{\rm max} = \mu R$	M1		
	so $32 g \cos \theta$ or $313 6 \cos \theta$ N	Δ1		
	50 522 0050 01 515.00050 14	AI		3
(ii)				-
( )	. 1.25			
	Distance is $\frac{1}{\sin \theta}$	BI		
	WD is $F_{max} d$	M1		
	1.25			
	so $32g\cos\theta \times \frac{1}{\sin\theta}$	E1	Award for this or equivalent seen	
	392			
	$=\frac{\cos 2}{\tan \theta}$			
	tano			3
(iiii)				5
()	$\Delta$ GPE is mgh	M1		
	so $80 \times 9.8 \times 1.25 = 980$ J	A1	Accept 100g J	
			1 0	2
(iv)				
	either			
	$P = F_{\mathcal{V}}$	M1		
	so $(80g\sin 35 + 32g\cos 35) \times 1.5$	B1	Weight term	
		A1	All correct	
	= 1059.85 so 1060 W (3 s. f.)	A1	cao	
	or			
	$P = \frac{WD}{WD}$	M1		
	$\Delta t$			
	$980 \pm \frac{392}{}$			
	so $\frac{1}{\tan 35}$	B1	Numerator FT their GPE	
	$\left(\frac{1.25}{1.25}\right) \div 1.5$	B1	Denominator	
	$(\sin 35)^{1.5}$			
	= 1059.85 so 1060 W (3 s. f.)	A1	cao	
	· · ·			4
(v)	either			
	Using the W-E equation	M1	Attempt speed at ground or dist to reach required	
			speed. Allow only init KE omitted	
	$0.5 \times 80 \times v^2 = 0.5 \times 80 \times (1)^2 = 980 = 392$	B1	KE terms Allow sign errors ET from (iv)	
	$(0.5 \times 80 \times V - 0.5 \times 80 \times (\frac{1}{2})^{-980} - \frac{1}{\tan 35}$	DI	KE terms. Anow sign chois. I'r nom (iv).	
		B1	Both WD against friction and GPE terms. Allow	
			sign errors. FT from parts above.	
		A1	All correct	
	v = 3.2793 so yes	A1	CWO	
	or			
	N2L down slope	MI	All forces present	
	a = 2.4099/3	Al		
	usiance sild, using $uvast$ is $1.8153/2$	AI M1	valid comparison	
	= 1.0412 < 1.25 so yes		CWO	
	1.0712 > 1.23 50 ycs			5
		17		5
I		· · ·		1

Q 3		Mark		Sub
<b>Q 3</b> (i)	$\overline{y}:  250 \times 4 + 125 \left(8 + \frac{30}{2} \cos \alpha\right) = 375 \overline{y}$	Mark M1 B1 M1 B1 B1 B1	Correct method for $\overline{y}$ or $\overline{z}$ Total mass correct $15 \cos \alpha$ or $15 \sin \alpha$ attempted either part $\left(8 + \frac{30}{2} \cos \alpha\right)$ $250 \times 4$	Sub
	$\overline{y} = \frac{1}{3} = 9\frac{1}{3}$ $\overline{z}:  (250 \times 0+) \ 125 \times \frac{30}{2} \sin \alpha = 375\overline{z}$ $\overline{z} = 3$	E1 B1 E1	Accept any form LHS	8
(ii)	Yes. Take moments about CD. c.w moment from weight; no a.c moment from table	E1 E1	[Award E1 for $9\frac{1}{3} > 8$ seen or 'the line of action of the weight is outside the base]	2
(iii)	c.m. new part is at (0, 8 + 20, 15) $375 \times \frac{28}{3} + 125 \times 28 = 500\overline{y}$ so $\overline{y} = 14$ $375 \times 3 + 125 \times 15 = 500\overline{z}$ so $\overline{z} = 6$	M1 M1 E1 E1	Either <i>y</i> or <i>z</i> coordinate correct Attempt to 'add' to (i) or start again. Allow mass error.	4
(iv)	Diagram Angle is $\arctan \frac{6}{14}$ = 23.1985 so 23.2° (3 s. f.)	B1 B1 M1 A1	Roughly correct diagram Angle identified (may be implied) Use of tan. Allow use of 14/6 or equivalent. cao	4

Q 4		mark		sub
(a) (i)	Let the $\uparrow$ forces at P and Q be $R_{\rm p}$ and $R_{\rm Q}$ c.w. moments about P $2 \times 600 - 3R_{Q} = 0$ so force of 400 N $\uparrow$ at Q a.c. moments about Q or resolve $R_{\rm p} = 200$ so force of 200 N $\uparrow$ at P	M1 A1 M1 A1	Moments taken about a named point.	4
(ii)	$R_{\rm p} = 0$ c.w. moments about Q $2L - 1 \times 600 = 0$ so $L = 300$	B1 M1 A1	Clearly recognised or used. Moments attempted with all forces. Dep on $R_p = 0$ or $R_p$ not evaluated.	3
(b) (i)	$\cos \alpha = {}^{15}\!/_{17}$ or $\sin \alpha = {}^{8}\!/_{17}$ or $\tan \alpha = {}^{8}\!/_{15}$ c.w moments about A $16 \times 340 \cos \alpha - 8R = 0$ so $R = 600$	B1 M1 A1 E1	Seen here or below or implied by use. Moments. All forces must be present and appropriate resolution attempted. Evidence of evaluation.	4
(11)	Diagram (Solution below assumes all internal forces set as tensions)	B1 B1	Must have 600 (or <i>R</i> ) and 340 N and reactions at A. All internal forces clearly marked as tension or thrust. Allow mixture. [Max of B1 if extra forces present]	2
(iii)	B ↓ 340 cos $\alpha$ + $T_{BC}$ cos $\alpha$ = 0 so $T_{BC}$ = -340 (Thrust of) 340 N in BC C → $T_{BC}$ sin $\alpha$ - $T_{AC}$ sin $\alpha$ = 0 so $T_{AC}$ = -340 (Thrust of) 340 N in AC B ← $T_{AB}$ + $T_{BC}$ sin $\alpha$ - 340 sin $\alpha$ = 0 so $T_{AB}$ = 320 (Tension of) 320 N in AB Tension/ Thrust all consistent with working	M1 A1 F1 M1 A1 F1	Equilibrium at a pin-joint Method for $T_{AB}$ [Award a max of 4/6 if working inconsistent with diagram]	6
		19		

# 4763 Mechanics 3

1 (i)	$[Force] = MLT^{-2}$	B1	
	$[Density] = M L^{-3}$	B1 2	
(ii)	$[n] = \frac{[F][d]}{[m]} = \frac{(MLT^{-2})(L)}{[m]}$	B1	for $[A] = L^2$ and $[v] = LT^{-1}$
	$[A][v_2 - v_1]  (L^2)(LT^{-1}) = ML^{-1}T^{-1}$	M1	Obtaining the dimensions of $\eta$
		3	
(iii)	$\begin{bmatrix} 2a^2 \rho g \end{bmatrix} L^2 (M L^{-3})(L T^{-2}) = T^{-1}$	B1	For $[g] = LT^{-2}$
	$\begin{bmatrix} -9\eta \end{bmatrix} = \frac{1}{ML^{-1}T^{-1}} = L T$	M1	Simplifying dimensions of RHS
	which is same as the dimensions of $v$	E1	Correctly shown
		3	
(iv)	$(M L^{-3}) L^{\alpha} (L T^{-1})^{\beta} (M L^{-1} T^{-1})^{\gamma}$ is dimensionless		
	$\gamma = -1$	B1 cao	
	$-\beta - \gamma = 0$	M1	
	$-3 + \alpha + \beta - \gamma = 0$	M1A1	
	$\alpha = 1,  p = 1$	A1 cao	
		5	
(v)	$R = \frac{\rho wv}{\eta} = \frac{0.4 \times 25 \times 150}{1.6 \times 10^{-5}}  (=9.375 \times 10^7)$	M1	Evaluating <i>R</i>
	$=\frac{1.3\times5v}{1.8\times10^{-5}}$	A1	Equation for <i>v</i>
	Required velocity is $260 \text{ m s}^{-1}$	A1 cao <b>3</b>	

2		M1	Resolving vertically (weight and at
(a)(1)	$T\cos\alpha = T\cos\beta + 0.27 \times 9.8$	A1	Allow $T_1$ and $T_2$
	$\sin \alpha = \frac{1.2}{2.0} = \frac{3}{5}, \ \cos \alpha = \frac{4}{5} \ (\alpha = 36.87^{\circ})$		1 2
	$\sin\beta = \frac{1.2}{1.3} = \frac{12}{13}, \ \cos\beta = \frac{5}{13} \ (\beta = 67.38^{\circ})$	B1	For $\cos \alpha$ and $\cos \beta$ [or $\alpha$ and $\beta$ ]
	$\frac{27}{65}T = 2.646$	M1	Obtaining numerical equation for T e.g. $T(\cos 36.9 - \cos 67.4) = 0.27 \times 9.8$
	Tension is 6.37 N	E1	(Condone 6.36 to 6.38) 5
(ii)		M1	Using $v^2/1.2$
	$T\sin\alpha + T\sin\beta = 0.27 \times \frac{v^2}{1.2}$	A1	Allow $T_1$ and $T_2$
	$6.37 \times \frac{3}{5} + 6.37 \times \frac{12}{13} = 0.27 \times \frac{v^2}{1.2}$	M1	Obtaining numerical equation for $v^2$
	$v^2 = 43.12$		
	Speed is $6.57 \text{ ms}^{-1}$	A1	
			4
(b)(i)	$0.2 \times 9.8 = 0.2 \times \frac{u^2}{1.25}$	MI	Using acceleration $u^2/1.25$
	$u^2 = 9.8 \times 1.25 = 12.25$		
	Speed is $3.5 \text{ ms}^{-1}$	E1	2
(ii)		M1	Using conservation of energy
	$\frac{1}{2}m(v^2 - 3.5^2) = mg(1.25 - 1.25\cos 60)$	A1	
	$v^2 = 24.5$		
	Radial component is $\frac{24.5}{1.25}$	M1	With numerical value obtained by
	$= 19.6 \mathrm{m  s^{-2}}$	A1	(M0 if mass, or another term,
	1 angential component is $g \sin 60$	M1	included)
	= 0.49 1118	A1	For sight of $(m)g\sin 60^\circ$ with no other terms
	$T + 0.2 \times 9.8 \cos 60 = 0.2 \times 19.6$	M1	Radial equation (3 terms)
(iii)	Tension is 2.94 N	A1 cao	This M1 can be awarded in (ii) 2

3 (i)	$\frac{980}{25}y = 5 \times 9.8$	M1	Using $\frac{\lambda y}{l}$ (Allow M1 for
	Extension is 1.25 m	Δ1	$\frac{t_0}{980 v = mg}$
		2	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
(ii)	$T = \frac{980}{25}(1.25 + x)$ 5×9.8-39.2(1.25 + x) = 5 $\frac{d^2x}{dt^2}$	B1 (ft) M1 F1	<i>(ft) indicates ft from previous parts as for A marks</i> Equation of motion with three terms
	$-39.2x = 5\frac{d^2x}{dt^2}$ $\frac{d^2x}{dt^2} = -7.84x$	E1 <b>4</b>	Must have $\ddot{x}$ In terms of $x$ only
(iii)	$8.4^2 = 7.84(A^2 - 1.25^2)$ Amplitude is 3.25 m	M2 A1 A1 <b>4</b>	Using $v^2 = \omega^2 (A^2 - x^2)$
	OR M2 $\frac{980}{2 \times 25} y^{2} = 5 \times 9.8 y + \frac{1}{2} \times 5 \times 8.4^{2}$ M1 y = 4.5 Amplitude is $4.5 - 1.25 = 3.25$ m A1		Equation involving EE, PE and KE
	OR $x = A \sin 2.8t + B \cos 2.8t$ x = -1.25, v = 8.4 when $t = 0\Rightarrow A = 3, B = -1.25AllAmplitude is \sqrt{A^2 + B^2} = 3.25All$		Obtaining A and B Both correct
(iv)	Maximum speed is $A \omega = 3.25 \times 2.8$ = 9.1 m s ⁻¹	M1 A1 2	or equation involving EE, PE and KE ft only if answer is greater than 8.4
(v)	$x = 3.25 \cos 2.8t$	B1 (ft)	or $x = 3.25 \sin 2.8t$ or $v = 9.1 \cos 2.8t$ or $v = 9.1 \sin 2.8t$ or $x = 3.25 \sin(2.8t + \varepsilon)$ etc or $x = \pm 3 \sin 2.8t \pm 1.25 \cos 2.8t$
	$-1.25 = 3.25 \cos 2.8t$	M1	Obtaining equation for t or $\varepsilon$ by setting $x = (\pm)1.25$ or $v = (\pm)8.4$ or solving $\pm 3 \sin 2.8t \pm 1.25 \cos 2.8t = 3.25$
		MI	Strategy for finding the required time e.g. $\frac{1}{2.8} \sin^{-1} \frac{1.25}{3.25} + \frac{1}{4} \times \frac{2\pi}{2.8}$
	Time is 0.702 s	A1 cao <b>4</b>	$2.8t - 0.3948 = \frac{1}{2}\pi \text{ or}$ 2.8t - 1.966 = 0

(vi)	e.g. Rope is light	B1B1B1	Three modelling assumptions
	Rock is a particle	3	
	Rope obeys Hooke's law / Perfectly elastic /		
	Within elastic limit / No energy loss in rope		
4 (a)	$\int \frac{1}{2} y^2  \mathrm{d}x = \int_{a}^{a} \frac{1}{2} (a^2 - x^2)  \mathrm{d}x$	M1	For integral of $(a^2 - r^2)$
	$J_{-a}$	1111	
	$= \left\lfloor \frac{1}{2}(a^2x - \frac{1}{3}x^3) \right\rfloor_{-a}^{a}$		
	$=\frac{2}{3}a^{3}$	A1	
	$\overline{n} = -\frac{2}{3}a^3$		
	$y = \frac{1}{\frac{1}{2}\pi a^2}$	M1	Dependent on previous M1
	$=\frac{4a}{2}$		
	$3\pi$	E1	
		4	1
(D)(1)	C ^h		$\pi$ may be omitted throughout
	$V = \int \pi y^2  \mathrm{d}x = \left[ -\pi (mx)^2  \mathrm{d}x \right]$	M1	For integral of $x^2$
	$J_0$		or use of $V = \frac{1}{3}\pi r^2 h$ and $r = mh$
	$= \left\lfloor \frac{1}{3}\pi m^2 x^3 \right\rfloor_0 = \frac{1}{3}\pi m^2 h^3$	A1	
	$\int \pi x y^2  \mathrm{d}x = \int^h \pi x (mx)^2  \mathrm{d}x$	M1	For integral of $x^3$
	$J_0$		
	$= \left\lfloor \frac{1}{4}\pi m^2 x^4 \right\rfloor_0 = \frac{1}{4}\pi m^2 h^4$	A1	
	$\overline{x} = \frac{\frac{1}{4}\pi m^2 h^4}{1}$		
	$\frac{1}{3}\pi m^2 h^3$	M1	<i>Dependent on M1 for integral of</i>
	$=\frac{3}{4}h$	<b>E</b> 1	A
		E1 6	
(ii)	$m_{\rm c} = \frac{1}{2}\pi \times 0.7^2 \times 2.4  \rho = \frac{1}{2}\pi \rho \times 1.176$		
	$VG_{1} = 1.8$		
	$m_{2} = \frac{1}{2}\pi \times 0.4^{2} \times 1.10 = \frac{1}{2}\pi 0 \times 0.176$		
	$W_{2} = \frac{1}{3}\pi \times 0.1 \times 1.1 p = \frac{1}{3}\pi p \times 0.170$	B1	For $m_1$ and $m_2$ (or volumes)
	$v_{02} = 1.3 + \frac{1}{4} \times 1.1 = 2.123$	B1	or $\frac{1}{4} \times 1.1$ from base
	$(m_1 - m_2)(VG) + m_2(VG_2) = m_1(VG_1)$	M1	Attempt formula for composite
	$(VG) + 0.176 \times 2.125 = 1.176 \times 1.8$	F1	body
	Distance (VG) is 1.74 m	A1	
		5	
(iii)	VQG is a right-angle	M1	
	VQ = VG cos $\theta$ where tan $\theta = \frac{0.7}{2.4}$ ( $\theta = 16.26^{\circ}$ )	M1	
	$VQ = 1.7428 \times \frac{24}{25}$		
	=1.67 m	A1	ft is VG×0.96
		3	

# 4766 Statistics 1

Section A

Q1 (i)	(With $\sum fx = 7500$ and $\sum f = 10000$ then arriving at the		
	mean)(i)£0.75 scores (B1, B1)(ii)75p scores (B1, B1)(iii)0.75p scores (B1, B0) (incorrect units)(iv)£75 scores (B1, B0) (incorrect units)After B0, B0then sight of $\frac{7500}{10000}$ scores SC1. SC1or an answerin the range £0.74 - £0.76 or 74p - 76p (both inclusive) scoresSC1 (units essential to gain this mark)	B1 for numerical mean (0.75 or 75 seen) B1dep for correct units attached	
	<ul> <li><u>Standard Deviation: (CARE NEEDED here with close proximity</u> of answers)</li> <li>50.2(0) using divisor 9999 scores B2 (50.20148921)</li> <li>50.198 (= 50.2) using divisor 10000 scores B1(<i>rmsd</i>)</li> <li>If divisor is <u>not</u> shown (or calc used) and only an answer of 50.2 (i.e. <u>not</u> coming from 50.198) is seen then award B2 on b.o.d. (default)</li> </ul>	B2 correct s.d. (B1) correct rmsd (B2) default	
	$\frac{\text{After B0 scored}}{S_{xx}} \text{ then an attempt at } S_{xx} \text{ as evident by either}$ $S_{xx} = (5000 + 200000 + 25000000) - \frac{7500^2}{10000}  (= 25199375)$ or $S_{xx} = (5000 + 200000 + 25000000) - 10000(0.75)^2$ scores (M1) or M1ft 'their 7500 ² ' or 'their 0.75 ² ' NB The <u>structure</u> must be correct in both above cases with a max of <u>1 slip only after applying the f.t.</u>	$\sum fx^2 = 25,205,000$ Beware $\sum x^2 = 25,010,100$ After B0 scored then (M1) or M1f.t. for attempt at $S_{xx}$ NB full marks for correct results from recommended method which is use of calculator functions	4

(ii)	P(Two £10 or two £100) $= \frac{50}{10000} \times \frac{49}{9999} + \frac{20}{10000} \times \frac{19}{9999}$ $= 0.0000245 + 0.0000038 = (0.00002450245 + 0.00000380038)$ $= 0.000028(3) \text{ o.e.} = (0.00002830283)$ $\frac{\text{After M0, M0}}{10000} \text{ then } \frac{50}{10000} \times \frac{50}{10000} + \frac{20}{10000} \times \frac{20}{10000} \text{ o.e.}$ Scores SC1 (ignore final answer but SC1 may be implied by sight of 2.9 × 10 ⁻⁵ o.e.) Similarly, $\frac{50}{10000} \times \frac{49}{10000} + \frac{20}{10000} \times \frac{19}{10000} \text{ scores SC1}$	M1 for either correct product seen (ignore any multipliers) M1 sum of both correct (ignore any multipliers) A1 CAO (as opposite with no rounding) (SC1 case #1) (SC1 case #2) <u>CARE</u> answer is also $2.83 \times 10^{-5}$	3
		TOTAL	7
Q2 (i)	Either P(all correct) = $\frac{1}{6} \times \frac{1}{5} \times \frac{1}{4} \times \frac{1}{3} \times \frac{1}{2} \times \frac{1}{1} = \frac{1}{720}$ or P(all correct) = $\frac{1}{6!} = \frac{1}{720} = 0.00139$	M1 for 6! Or 720 (sioc) or product of fractions A1 CAO (accept 0.0014)	2
(ii)	Either P(picks T, O, M) = $\frac{3}{6} \times \frac{2}{5} \times \frac{1}{4} = \frac{1}{20}$ or P(picks T, O, M) = $\frac{1}{6} \times \frac{1}{5} \times \frac{1}{4} \times 3! = \frac{1}{20}$ or P(picks T, O, M) = $\frac{1}{\binom{6}{3}} = \frac{1}{20}$	M1 for denominators M1 for numerators or 3! A1 CAO Or M1 for $\binom{6}{3}$ or 20 <u>sioc</u> M1 for $1/\binom{6}{3}$ A1 CAO	3
		TOTAL	5
Q3 (i)	<i>p</i> = 0.55	B1 cao	1
(ii)	$E(X) = 0 \times 0.55 + 1 \times 0.1 + 2 \times 0.05 + 3 \times 0.05 + 4 \times 0.25 = 1.35$ $E(X^{2}) = 0 \times 0.55 + 1 \times 0.1 + 4 \times 0.05 + 9 \times 0.05 + 16 \times 0.25$ $= 0 + 0.1 + 0.2 + 0.45 + 4$ $= (4.75)$ $Var(X) = 'their' 4.75 - 1.35^{2} = 2.9275 \text{ awfw} (2.9275 - 2.93)$	M1 for $\Sigma rp$ (at least 3 non zero terms correct) A1 CAO(no 'n' or 'n-1' divisors) M1 for $\Sigma r^2 p$ (at least 3 non zero terms correct) M1dep for – their E( X ) ² provided Var( X ) > 0 A1 cao (no 'n' or 'n-1'	
		divisors)	5
(iii)	P(At least 2 both times) = $(0.05+0.05+0.25)^2 = 0.1225$ o.e.	M1 for (0.05+0.05+0.25) ² or 0.35 ² seen A1cao: awfw (0.1225 - 0.123) or 49/400 TOTAL	2 8

Q4	$X \sim B(50, 0.03)$		
(i)	(A) $P(X = 1) = {\binom{50}{1}} \times 0.03 \times 0.97^{49} = 0.3372$	M1 $0.03 \times 0.97^{49}$ or $0.0067(4)$	
	(B) $P(X = 0) = 0.97^{50} = 0.2181$ P(X > 1) = 1 - 0.2181 - 0.3372 = 0.4447	M1 $\binom{50}{1} \times pq^{49}$ (p+q =1) A1 CAO (awfw 0. 337 to 0. 3372) or 0.34(2s.f.) or 0.34(2d.p.) but not just 0.34 B1 for 0.97 ⁵⁰ or 0.2181 (awfw 0.218 to 0.2181) M1 for	3
		1 - ( 'their' $p(X = 0) +'their' p(X = 1))must have both probabilitiesA1 CAO(awfw 0.4447 to 0.445)$	
(ii)	Expected number = $np = 240 \times 0.3372 = 80.88 - 80.93 = (81)$ Condone 240 × 0.34 = 81.6 = (82) but for M1 A1f.t.	M1 for 240×prob (A) A1FT	2
		TOTAL	8
Q5 (i)	P(R) × P(L) = $0.36 \times 0.25 = 0.09 \neq P(R \cap L)$ Not equal so not independent. (Allow $0.36 \times 0.25 \neq 0.2$ or 0.09 ≠ 0.2 or $\neq p(R \cap L)$ so not independent)	M1 for $0.36 \times 0.25$ or 0.09 seen A1 (numerical justification needed)	2
(ii)	R (.16 (0.2) 0.05 0.59	G1 for two overlapping circles labelled G1 for 0.2 and either 0.16 or 0.05 in the <b>correct places</b> G1 for all 4 <b>correct</b> probs in the <b>correct</b> places (including the 0.59) The last two G marks are independent of the labels	3
(iii)	$P(L \mid R) = \frac{P(L \cap R)}{P(R)} = \frac{0.2}{0.36} = \frac{5}{9} = 0.556 \text{ (awrt 0.56)}$ This is the probability that Anna is late given that it is raining. (must be in context) Condone 'if' or 'when' or 'on a rainy day' for 'given that' but <u>not</u> the words 'and' or 'because' or 'due to'	M1 for 0.2/0.36 o.e. A1 cao E1 (indep of M1A1) Order/structure <u>must</u> be correct i.e. no reverse statement	3
		TOTAL	8
L		1	-

### Section B

Q6	Median = 4.06 – 4.075 (inclusive)	B1cao	
(1)	$Q_1 = 3.8$ $Q_3 = 4.3$ Inter-quartile range = $4.3 - 3.8 = 0.5$	<ul> <li>B1 for Q₁ (cao)</li> <li>B1 for Q₃ (cao)</li> <li>B1 ft for IQR must be using t-values not locations to earn this mark</li> </ul>	4
(ii)	Lower limit ' their $3.8' - 1.5 \times$ 'their $0.5' = (3.05)$ Upper limit ' their $4.3' + 1.5 \times$ 'their $0.5' = (5.05)$ Very few if any temperatures <u>below 3.05 (but not zero)</u> None <u>above 5.05</u> 'So few, if any outliers' scores SC1	B1ft: must have -1.5 B1ft: must have +1.5 E1ft dep on -1.5 and Q ₁ E1ft dep on+1.5 and Q ₃ Again, must be using t- values NOT locations to earn these 4 marks	4
(iii)	Valid argument such as 'Probably not, because there is nothing to suggest that they are not genuine data items; (they do not appear to form a separate pool of data.') Accept: exclude outlier – 'measuring equipment was wrong' or 'there was a power cut' or ref to hot / cold day [Allow suitable valid alternative arguments]	E1	1
(iv)	Missing frequencies 25, 125, 50	B1, B1, B1 (all cao)	3
( <b>v</b> )	$Mean = (3.2 \times 25 + 3.6 \times 125 + 4.0 \times 243 + 4.4 \times 157 + 4.8 \times 50)/600$ $= 2432.8/600 = 4.05(47)$	M1 for at least 4 midpoints correct and being used in attempt to find $\sum ft$	2
		A1cao: awfw (4.05 – 4.055) ISW or rounding	
(vi)	New mean = $1.8 \times$ 'their $4.05(47)$ ' + $32 = 39.29(84)$ to $39.3$ New s = $1.8 \times 0.379$ = $0.682$	B1 FT M1 for 1.8 × 0.379 A1 CAO awfw (0.68 – 0.6822)	3
		TOTAL	17

Q7 (i)	$X \sim B(10, 0.8)$ (A) Either $P(X = 8) = {\binom{10}{8}} \times 0.8^8 \times 0.2^2 = 0.3020$ (awrt) or $P(X = 8) = P(X \le 8) - P(X \le 7)$ $= 0.6242 - 0.3222 = 0.3020$ (B) Either $P(X \ge 8) = 1 - P(X \le 7)$ = 1 - 0.3222 = 0.6778 or $P(X \ge 8) = P(X = 8) + P(X = 9) + P(X = 10)$ = 0.3020 + 0.2684 + 0.1074 = 0.6778	M1 $0.8^8 \times 0.2^2$ or 0.00671 M1 $\binom{10}{8} \times p^8 q^2$ ; (p+q =1) Or 45 × $p^8 q^2$ ; (p+q=1) A1 CAO (0.302) not 0.3 OR: M2 for 0.6242 – 0.3222 A1 CAO M1 for 1 – 0.3222 (s.o.i.) A1 CAO awfw 0.677 – 0.678 or M1 for sum of 'their' p(X=8) plus correct expressions for p(x=9) and p(X=10) A1 CAO awfw 0.677 – 0.678	3
(ii)	Let $X \sim B(18, p)$ Let $p$ = probability of delivery (within 24 hours) (for population) H ₀ : $p = 0.8$ H ₁ : $p < 0.8$ P( $X \le 12$ ) = 0.1329 > 5% ref: [pp =0.0816]	<ul> <li>B1 for definition of <i>p</i></li> <li>B1 for H₀</li> <li>B1 for H₁</li> <li>M1 for probability</li> <li>0.1329</li> <li>M1dep strictly for comparison of 0.1329</li> <li>with 5% (seen or clearly implied)</li> </ul>	
	So not enough evidence to reject H ₀ Conclude that there is not enough evidence to indicate that less than 80% of orders will be delivered within 24 hours Note: use of critical region method scores M1 for region {0,1,2,,9, 10} M1dep for 12 does not lie in critical region then A1dep E1dep as per scheme	A1dep on both M's E1dep on M1,M1,A1 for conclusion in context	7

(iii)	Let $X \sim B(18, 0.8)$ $H_1: p \neq 0.8$ LOWER TAIL $P(X \le 10) = 0.0163 < 2.5\%$ $P(X \le 11) = 0.0513 > 2.5\%$	B1 for H ₁ B1 for 0.0163 or 0.0513 seen M1dep for either correct comparison with <b>2.5%</b> ( <b>not 5%</b> ) (seen or clearly implied) A1dep for correct lower	
	UPPER TAIL $P(X \ge 17) = 1 - P(X \le 16) = 1 - 0.9009 = 0.0991 > 2.5\%$ $P(X \ge 18) = 1 - P(X \le 17) = 1 - 0.9820 = 0.0180 < 2.5\%$ So critical region is {0,1,2,3,4,5,6,7,8,9,10,18} o.e. Condone X ≤ 10 and X ≥ 18 or X = 18 but <u>not</u> p(X ≤ 10) and $p(X \ge 18)$ Correct CR without supportive working scores SC2 max after the 1 st B1 (SC1 for each fully correct tail of CR)	A1dep for correct lower tail CR (must have zero) B1 for 0.0991 or 0.0180 seen M1dep for either correct comparison with 2.5% (not 5%) (seen or clearly implied) A1dep for correct upper tail CR	7
		TOTAL	19

## 4767 Statistics 2

### Question 1

(i)	x	18	43	52	94	98	206	784	1530	M1 for attempt at ranking	
	У	1.15	0.97	1.26	1.35	1.28	1.42	1.32	1.64	(allow all ranks reversed)	
	Rank x	1	2	3	4	5	6	7	8		
	Rank y	2	1	3	6	4	7	5	8		
	<u>d</u>	-1	1	0	-2	1	-1	2	0	M1 for $d^2$	
	$d^2$	1	I	0	4	I	1	4	0	A1 for $\Sigma d^2 = 12$	
										M1 for method for $r_s$	
	1	6Σ	$d^2$	, 6	×12						-
	$r_s = 1$	$-\frac{1}{n(n^2)}$	$(-1)^{-1}$	$=1-\frac{1}{8}$	×63					A1 f.t. for $ r_s  < 1$	5
	- 0	× 057 (4	, ,	с) Га	11.000	96 to '	<b>)</b> a f 1			NB No ranking scores zero	
(	- 0	0.857 (	10 5 8.1	.) [ <i>u</i>	110W 0.	. 00 10 2	2 8.1.]				
(ii)											
	$H_0$ : no as	ssociat	ion be	tween	X and	Y in th	ie popu	ilation		B1 for H ₀	
	$H_1$ : some	e assoc	iation	betwe	en X a	nd Y ir	n the p	opulati	ion	B1 for H ₁	
	Two tail	test cri	tical v	alue at	5% le	vel is	0.7381			B1 for population SOI	
	Since 0.8	57> 0.	7381,	there i	s suffi	cient e	eviden	ce to re	eject	NB H ₀ H ₁ <u>not</u> ito $\rho$	
	$H_0$ ,	uda the	ot tha	widon		raata tl	not that	ro ia		B1 for ± 0. 7381	
	associatio	on betv	veen p	opulati	on siz	e X an	d avera	age wa	lking	M1 for sensible	
	speed Y.									comparison with c.v.,	
										provided $ r_s  < 1$	6
										words f.t. their $r_s$ and	
										sensible cv	
(iii)		-									
(111)	t = 45, v	v = 2.2	2367							BI for $t$ and $w$ used (SOI)	
	$b = \frac{Stw}{W}$	584.	6 - 270	0×13.4	42/6		9.3 =	-0 011		(501)	
	Stt	13	8900 -	$270^{2}$ /	6	175	0	0.011		M1 for attempt at	
	OR $b = \frac{5}{2}$	584.6/	6 – 45	× 2.23	$\frac{67}{2} = -$	-3.2	$\frac{18}{18}$ =	-0.01	1	gradient (b)	
	honco loo	139 st sour	00/6 -	$-45^2$	n lina	291.6	667			A1 CAO for -0.011	
	nence lea		- b(t)	$\frac{1}{t}$	in inne	15.					
	¹	w - w =	-v(i - 1)	-i) '	0.011/	1 1 -	<b>`</b>			M1 for equation of line	
	=	$\rightarrow w -$	2.230	)/ = -(	J.UTI(	<i>i</i> – 45	)			equation	
	=	$\Rightarrow w =$	-0.0	11t + 2	.13						5
1	1										J

(iv)	(A)	For $t = 80$ , predicted speed = $-0.011 \times 80 + 2.73 = 1.85$	M1 A1 FT provided b < 0	
	( <i>B</i> ) NB Al	The relationship relates to adults, but a ten year old will not be fully grown so may walk more slowly. low E1 for comment about extrapolation not in context	E1 extrapolation o.e. E1 sensible contextual comment	4
			TOTAL	20

### Question 2

(i)	Binomial(5000,0.0001)	B1 for binomial B1 dep, for parameters	2
(ii)	<i>n</i> is large and <i>p</i> is small $\lambda = 5000 \times 0.0001 = 0.5$	B1, B1 (Allow appropriate numerical ranges) B1	3
(iii)	$P(X \ge 1) = 1 - \tilde{e} \frac{0.5^{\circ}}{0!} = 1 - 0.6065 = 0.3935$ or from tables = 1 - 0.6065 = 0.3935	M1 for correct calculation or correct use of tables A1	2
(iv)	$P(9 \text{ of } 20 \text{ contain at least one})$ $= \begin{pmatrix} 20 \\ 9 \end{pmatrix} \times 0.3935^9 \times 0.6065^{11}$ $= 0.1552$	M1 for coefficient M1 for $p^9 \times (1-p)^{11}$ , p from part (iii) A1	3
( <b>v</b> )	Expected number = $20 \times 0.3935 = 7.87$	M1 A1 FT	2
(vi)	Mean = $\frac{\Sigma x f}{n} = \frac{7+4}{20} = \frac{11}{20} = 0.55$	B1 for mean	
	Variance = $\frac{1}{n-1} \left( \Sigma f x^2 - n \overline{x}^2 \right)$	M1 for calculation	
	$=\frac{1}{19}(15-20\times0.55^2)=0.471$	A1 CAO	3
(vii)	Yes, since the mean is close to the variance,	B1	
	and also as the expected frequency for 'at least one', i.e. 7.87, is close to the observed frequency of 9.	E1 for sensible comparison B1 for observed frequency = 7 + 2 = 9	3
		TOTAL	18

Question 3

(i)	(4) $P(Y \le 120) = P(Z \le \frac{120 - 115.3}{2})$		
	$(A) = I(A < 120) - I(2 < \frac{120}{21.9})$	M1 for standardizing A1 for $z = 0.2146$	
	= P(Z < 0.2146)	A1 CAO (min 2 of to	
	$= \Phi(0.2146) = 0.5849$	include use of difference	
		column)	
	(P)  P(100 < V < 110) =		3
	(100 - 1153) = 110 - 1153)	M1 for stor dordining both	
	$P\left[\frac{100 - 115.5}{21.0} < Z < \frac{110 - 115.5}{21.0}\right]$	100 & 110	
	= P(-0.6986 < 7 < -0.2420)		
	$- \frac{\pi}{2} (0.096) - \frac{\pi}{2} (0.2420)$	M1 for correct structure in	
	$= \Phi(0.6986) - \Phi(0.2420)$ = 0.7577 - 0.5956	calc ⁿ	
	= 0.1621	AICAO	3
	(C) From tables $\Phi^{-1}(0.1) = -1.282$	B1 for $\pm 1.282$ seen	
	k - 115.3 - 1282	MI for equation in k and	
	$\frac{-1.202}{-21.9}$	negative z value	
	21.)		
	$k = 115.3 - 1.282 \times 21.9 = 87.22$	A1 CAO	3
	$k = 115.3 - 1.282 \times 21.9 = 87.22$	A1 CAO	3
(ii)	$k = 115.3 - 1.282 \times 21.9 = 87.22$ From tables,	A1 CAO B1 for 0.5244 or ±1.036	3
(ii)	$k = 115.3 - 1.282 \times 21.9 = 87.22$ From tables, $\Phi^{-1}(0.70) = 0.5244, \Phi^{-1}(0.15) = -1.036$	A1 CAO B1 for 0.5244 or ±1.036 seen M1 for at least one	3
(ii)	$k = 115.3 - 1.282 \times 21.9 = 87.22$ From tables, $\Phi^{-1}(0.70) = 0.5244, \ \Phi^{-1}(0.15) = -1.036$ $180 = \mu + 0.5244 \ \sigma$	A1 CAO B1 for 0.5244 or $\pm 1.036$ seen M1 for at least one equation in $\mu$ and $\sigma$ and	3
(ii)	$k = 115.3 - 1.282 \times 21.9 = 87.22$ From tables, $\Phi^{-1}(0.70) = 0.5244, \Phi^{-1}(0.15) = -1.036$ $180 = \mu + 0.5244 \sigma$ $140 = \mu - 1.036 \sigma$	A1 CAO B1 for 0.5244 or $\pm 1.036$ seen M1 for at least one equation in $\mu$ and $\sigma$ and $\Phi^{-1}$ value	3
(ii)	$k = 115.3 - 1.282 \times 21.9 = 87.22$ From tables, $\Phi^{-1}(0.70) = 0.5244, \Phi^{-1}(0.15) = -1.036$ $180 = \mu + 0.5244 \sigma$ $140 = \mu - 1.036 \sigma$ $40 = 1.5604 \sigma$	A1 CAO B1 for 0.5244 or $\pm 1.036$ seen M1 for at least one equation in $\mu$ and $\sigma$ and $\Phi^{-1}$ value M1 dep for attempt to	3
(ii)	$k = 115.3 - 1.282 \times 21.9 = 87.22$ From tables, $\Phi^{-1}(0.70) = 0.5244, \Phi^{-1}(0.15) = -1.036$ $180 = \mu + 0.5244 \sigma$ $140 = \mu - 1.036 \sigma$ $40 = 1.5604 \sigma$ $\sigma = 25.63, \mu = 166.55$	A1 CAO B1 for 0.5244 or $\pm 1.036$ seen M1 for at least one equation in $\mu$ and $\sigma$ and $\Phi^{-1}$ value M1 dep for attempt to solve two equations	3
(ii)	$k = 115.3 - 1.282 \times 21.9 = 87.22$ From tables, $\Phi^{-1}(0.70) = 0.5244, \Phi^{-1}(0.15) = -1.036$ $180 = \mu + 0.5244 \sigma$ $140 = \mu - 1.036 \sigma$ $40 = 1.5604 \sigma$ $\sigma = 25.63, \mu = 166.55$	A1 CAO B1 for 0.5244 or $\pm 1.036$ seen M1 for at least one equation in $\mu$ and $\sigma$ and $\Phi^{-1}$ value M1 dep for attempt to solve two equations A1 CAO for both	3
(ii) (iii)	$k = 115.3 - 1.282 \times 21.9 = 87.22$ From tables, $\Phi^{-1}(0.70) = 0.5244, \Phi^{-1}(0.15) = -1.036$ $180 = \mu + 0.5244 \sigma$ $140 = \mu - 1.036 \sigma$ $40 = 1.5604 \sigma$ $\sigma = 25.63, \mu = 166.55$ $\Phi^{-1}(0.975) = 1.96$	A1 CAO B1 for 0.5244 or $\pm 1.036$ seen M1 for at least one equation in $\mu$ and $\sigma$ and $\Phi^{-1}$ value M1 dep for attempt to solve two equations A1 CAO for both B1 for $\pm 1.96$ seen M1 for aither equation	3
(ii) (iii)	$k = 115.3 - 1.282 \times 21.9 = 87.22$ From tables, $\Phi^{-1}(0.70) = 0.5244, \Phi^{-1}(0.15) = -1.036$ $180 = \mu + 0.5244 \sigma$ $140 = \mu - 1.036 \sigma$ $40 = 1.5604 \sigma$ $\sigma = 25.63, \mu = 166.55$ $\Phi^{-1}(0.975) = 1.96$ $a = 166.55 - 1.96 \times 25.63 = 116.3$	A1 CAO B1 for 0.5244 or $\pm 1.036$ seen M1 for at least one equation in $\mu$ and $\sigma$ and $\Phi^{-1}$ value M1 dep for attempt to solve two equations A1 CAO for both B1 for $\pm 1.96$ seen M1 for either equation A1	3
(ii) (iii)	$k = 115.3 - 1.282 \times 21.9 = 87.22$ From tables, $\Phi^{-1}(0.70) = 0.5244, \Phi^{-1}(0.15) = -1.036$ $180 = \mu + 0.5244 \sigma$ $140 = \mu - 1.036 \sigma$ $40 = 1.5604 \sigma$ $\sigma = 25.63, \mu = 166.55$ $\Phi^{-1}(0.975) = 1.96$ $a = 166.55 - 1.96 \times 25.63 = 116.3$ $b = 166.55 + 1.96 \times 25.63 = 216.8$	A1 CAO B1 for 0.5244 or $\pm 1.036$ seen M1 for at least one equation in $\mu$ and $\sigma$ and $\Phi^{-1}$ value M1 dep for attempt to solve two equations A1 CAO for both B1 for $\pm 1.96$ seen M1 for either equation A1 A1	3
(ii) (iii)	$k = 115.3 - 1.282 \times 21.9 = 87.22$ From tables, $\Phi^{-1}(0.70) = 0.5244, \Phi^{-1}(0.15) = -1.036$ $180 = \mu + 0.5244 \sigma$ $140 = \mu - 1.036 \sigma$ $40 = 1.5604 \sigma$ $\sigma = 25.63, \mu = 166.55$ $\Phi^{-1}(0.975) = 1.96$ $a = 166.55 - 1.96 \times 25.63 = 116.3$ $b = 166.55 + 1.96 \times 25.63 = 216.8$	A1 CAO B1 for 0.5244 or $\pm 1.036$ seen M1 for at least one equation in $\mu$ and $\sigma$ and $\Phi^{-1}$ value M1 dep for attempt to solve two equations A1 CAO for both B1 for $\pm 1.96$ seen M1 for either equation A1 A1 [Allow other correct	3 4 4
(ii)	$k = 115.3 - 1.282 \times 21.9 = 87.22$ From tables, $\Phi^{-1}(0.70) = 0.5244, \Phi^{-1}(0.15) = -1.036$ $180 = \mu + 0.5244 \sigma$ $140 = \mu - 1.036 \sigma$ $40 = 1.5604 \sigma$ $\sigma = 25.63, \mu = 166.55$ $\Phi^{-1}(0.975) = 1.96$ $a = 166.55 - 1.96 \times 25.63 = 116.3$ $b = 166.55 + 1.96 \times 25.63 = 216.8$	A1 CAO B1 for 0.5244 or $\pm 1.036$ seen M1 for at least one equation in $\mu$ and $\sigma$ and $\Phi^{-1}$ value M1 dep for attempt to solve two equations A1 CAO for both B1 for $\pm 1.96$ seen M1 for either equation A1 A1 [Allow other correct intervals]	3 4 4

Question	4

				TOTAL			
There is insufficient larger.	are A1 for fully correct conclusion in w context	ords in					
1.830 < 2.326 so not There is not sufficient	M1 (dep on first M1 sensible compar leading to a com	l) for rison iclusion					
1% level 1 tailed crit	ical value of	z = 2.326		B1 for 2.326			
Test statistic = $\frac{49.2}{8.5/}$	$\frac{-47}{\sqrt{50}} = \frac{2.2}{1.202}$	$\frac{1}{2} = 1.830$		M1 correct denomin A1	nator		
Result is not signific: There is not enough association between $H_0$ NB if $H_0$ $H_1$ reversed, B1or final A1	ant n evidence to reported grow or 'correlation	o suggest th wth and type a' mentioned, o	at there is s of plant; do not award fi	ome M1 A1 rst			
Critical value at 5%	evel = 9.488			BI CAO for cv	B1 CAO for cv		
Refer to $\chi_4^2$				B1 for 4 d.o.f.			
$X^2 = 8.69$				M1 for summation A1 for $X^2$ CAO			
Fennel	1.2955	0.0226	1.2344	correct final value of $X^2$	npneu oy a		
Aster	1.2002	0.6497	3.4172	A1 for all correct	mplied by a		
Coriander	0.0008	0.3772	0.4899	$(O-E)^2/E$			
CONTRIBUTION	Good	Average	Poor	M1 for valid attemp	nt at		
Penner	one row or c correct)	olumn					
Fennel	(allow A1 for at le	ast					
EXPECTED	12 10	Average 24.02	Poor 17.07	values (to 2 dp)	Jieu		
	~ .			M1 A2 for sures	atad		
	-	• •	•				

## 4768 Statistics 3

Q1 (a)	$f(x) = \lambda x^c, \ 0 \le x \le 1, \ \lambda > 1$			
(i)	$\int_0^1 \lambda x^c dx = 1$	M1	Correct integral, with limits (possibly appearing later), set equal to 1.	
	$\therefore \left\lfloor \frac{\lambda x^{c+1}}{c+1} \right\rfloor_0^1 = 1$	M1	Integration correct and limits used.	
	$\therefore \frac{\lambda}{c+1} = 1 \qquad \therefore c = \lambda - 1$	A1	c.a.o.	3
(ii)	$\mathrm{E}(X) = \int_0^1 \lambda x^{\lambda} \mathrm{d}x$	M1	Correct form of integral for $E(X)$ . Allow c's expression for <i>c</i> .	
	$-\left[\lambda x^{\lambda+1}\right]^{1}$ $-\lambda$	M1	Integration correct and limits used.	
	$-\left\lfloor \lambda+1 \right\rfloor_{0} - \lambda+1.$	A1		3
(iii)	$E(X^{2}) = \int_{-\infty}^{1} \lambda x^{\lambda+1} dx$	M1	Correct form of integral for $E(X^2)$ .	
	$= \left[\frac{\lambda x^{\lambda+2}}{\lambda}\right]^{1} = \frac{\lambda}{\lambda}$	A1	Allow c's expression for c.	
	$\left[\lambda+2\right]_{0} = \lambda+2$	M1	Use of $Var(Y) = F(Y^2) - F(Y)^2$	
	$\operatorname{Var}(X) = \frac{\lambda}{\lambda+2} - \left(\frac{\lambda}{\lambda+1}\right)^2 = \frac{\lambda(\lambda+1)^2 - \lambda^2(\lambda+2)}{(\lambda+2)(\lambda+1)^2}$	1011	Allow c's $E(X^2)$ and $E(X)$ .	
	$=\frac{\lambda^3+2\lambda^2+\lambda-\lambda^3-2\lambda^2}{\lambda}=\frac{\lambda}{\lambda}$	A1	Algebra shown convincingly.	4
	$(\lambda+2)(\lambda+1)^2$ $(\lambda+2)(\lambda+1)^2$		beware printed answer.	
(b)	Times $-32$ Rank of $ diff $ 40         8         4           20 $-12$ 7           18 $-14$ 8           11 $-21$ 12		H ₀ : $m = 32$ , H ₁ : $m < 32$ , where <i>m</i> is the population median time.	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1	for subtracting 32.	
	35 3 1	A1	for ranks.	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		ft if ranks wrong.	
	12 -20 11			
	21 -11 6			
	$W_+ = 1 + 2 + 3 + 4 + 9 = 19$	B1	(or $W_{-} = 5 + 6 + 7 + 8 + 10 + 11 + 12$ = 59)	
	Refer to Wilcoxon single sample tables for $n = 12$ .	M1	No ft from here if wrong.	
	Lower (or upper if 59 used) 5% tail is 17 (or 61 if 59 used)	A1	i.e. a 1-tail test. No ft from here if	
	Result is not significant.	A1	ft only c's test statistic.	
	Seems that there is no evidence that Godfrey's	A1	ft only c's test statistic.	8
	times have decreased.			18

Q2	$V_G \sim N(56.5, 2.9^2)$ $V_W \sim N(38.4, 1.1^2)$		When a candidate's answers suggest that (s)he appears to have neglected to use the difference columns of the Normal distribution tables penalise the first occurrence only.	
(i)	$P(V_G < 60) = P(Z < \frac{60 - 56.5}{2.9} = 1.2069)$ = 0.8862	M1 A1 A1	For standardising. Award once, here or elsewhere.	3
(ii)	$V_T \sim N(56.5 + 38.4 = 94.9,$ $2.9^2 + 1.1^2 = 9.62)$ $P(\text{this} > 100) = P(Z > \frac{100 - 94.9}{3.1016} = 1.6443)$	B1 B1	Mean. Variance. Accept sd (= 3.1016).	
	= 1 - 0.9499 = 0.0501	A1	c.a.o.	3
(iii)	$W_T \sim N(3.1 \times 56.5 + 0.8 \times 38.4 = 205.87,$ $3.1^2 \times 2.9^2 + 0.8^2 \times 1.1^2 = 81.5945)$	M1 A1 M1 A1	Use of "mass = density × volume" Mean. Variance. Accept sd (= 9.0330).	
	P(200 < this < 220) = $P(\frac{200 - 205.87}{9.0330} < Z < \frac{220 - 205.87}{9.0330})$ = $P(-0.6498 < Z < 1.5643)$	M1	Formulation of requirement.	
	= 0.9411 - (1 - 0.7422) = 0.6833	A1	c.a.o.	6
(iv)	Given $\bar{x} = 205.6  s_{n-1} = 8.51$ H ₀ : $\mu = 200$ , H ₁ : $\mu > 200$			
	Test statistic is $\frac{205.6 - 200}{\frac{8.51}{\sqrt{10}}}$	M1	Allow alternative: $200 + (c's \ 1.833)$ $\times \frac{8.51}{\sqrt{10}}$ (= 204.933) for subsequent comparison with $\overline{x}$ . (Or $\overline{x} - (c's \ 1.833) \times \frac{8.51}{\sqrt{10}}$	
	= 2.081.	A1	(= 200.667) for comparison with 200.) c.a.o. but ft from here in any case if wrong. Use of $200 - \overline{x}$ scores M1A0, but ft.	
	Refer to $t_9$ .	M1	No ft from here if wrong. P(t > 2, 0.81) = 0.0336	
	Single-tailed 5% point is 1.833.	A1	No ft from here if wrong.	
	Significant. Seems that the required reduction of the mean weight has not been achieved.	A1 A1	ft only c's test statistic. ft only c's test statistic.	6
				18

Q3				
(i)	In this situation a paired test is appropriate because there are clearly differences between specimens which the pairing eliminates.	E1 E1		2
(ii)	$H_0: \mu_D = 0$ $H_1: \mu_D > 0$	B1	Both. Accept alternatives e.g. $\mu_D < 0$ for H ₁ , or $\mu_A - \mu_B$ etc provided adequately defined. Hypotheses in words only must include "population"	
	Where $\mu_D$ is the (population) mean reduction in hormone concentration.	B1	For adequate verbal definition. Allow absence of "population" if correct notation $\mu$ is used, but do NOT allow " $\overline{X} =$ " or similar unless $\overline{X}$ is clearly and explicitly stated to be a <u>population</u> mean.	
	Must assume	D1		
	<ul><li>Sample is random</li><li>Normality of differences</li></ul>	B1 B1		4
(iii)	$\frac{\text{MUST}}{\text{Differences}}$ be PAIRED COMPARISON <i>t</i> test. Differences (reductions) (before – after) are		Allow "after – before" if consistent with alternatives above.	
	-0.75 2.71 2.59 6.07 0.71 -1.85 -0.98 3.56	1.77	2.95 1.59 4.17 0.38 0.88 0.95	
	$\overline{x} = 1.65  s_{n-1} = 2.100(3)  (s_{n-1}^2 = 4.4112)$	B1	Do not allow $s_n = 2.0291 (s_n^2 = 4.1171)$	
	Test statistic is $\frac{1.65 - 0}{\frac{2.100}{\sqrt{15}}}$	M1	Allow c's $\overline{x}$ and/or $s_{n-1}$ . Allow alternative: 0 + (c's 2.624) × $\frac{2.100}{\sqrt{15}}$ (= 1.423) for subsequent	
	= 3.043.	A1	comparison with $\overline{x}$ . (Or $\overline{x} - (c's 2.624) \times \frac{2.100}{\sqrt{15}}$ (= 0.227) for comparison with 0.) c.a.o. but ft from here in any case if wrong. Use of $0 - \overline{x}$ scores M1A0, but ft.	
	Refer to $t_{14}$ .	M1	No ft from here if wrong. P(t > 3.043) = 0.00438.	
	Single-tailed 1% point is 2.624.	A1	No ft from here if wrong.	
	Significant.	Al	ft only c's test statistic.	7
	Seems mean concentration of normone has fallen.		it only c s test statistic.	/
(iv)	CI is 1.65 ±	M1	ft c's $\overline{x} \pm .$	
	$k \times \frac{2.100}{\sqrt{15}}$	M1	tt c's $s_{n1}$ .	
	= (0.4869, 2.8131)	A1	A correct equation in <i>k</i> using either end of the interval or the width of the interval.	
	$\therefore k = 2.145$	A1	Allow ft c's $\overline{x}$ and $s_{n1}$ .	_
	By reference to $t_{14}$ tables this is a 95% Cl.	Al	c.a.o.	5
1		1	1	10

-										
Q4										
(i)	Sampling whi (easily) availa	ich selects ible.	from those	that are	E1					
	Circumstance	s may mea	in that it is t	he only	E1					
	Likely to be n	viable me weither rand	thod availab	ole. resentative.	E1					3
(ii)	$p + pq + pq^2$ -	$+ pq^3 + pq^4$	$^{4} + pq^{5} + q^{6}$							
	$=\frac{p(1-q^{6})}{1-q^{6}}+q^{6}$	$q^6 = \frac{p(1-q)}{r}$	$\frac{q^6}{q^6} + q^6$		M1	U pi	se of GP for robabilities,	rmula to sur	n	
	$= 1 - q^{6} + q^{6} =$	р = 1			A1	0	or expand in terms of $p$ or in terms of $q$ .			2
						А	lgebra show	n convincir	ngly.	
						В	seware answ	er given.	0.5	
(iii)	With $p = 0.25$									
	Probability	0.25	0.1875	0.140625	0.10546	59	0.079102	0.059326	0.177979	
	Expected	25.00	18.75	14.0625	10.5469	)	7.9102	5.9326	17.7979	
		L	l	1	<u>                                     </u>				<u> </u>	
					M1	P L	robabilities	correct to 3	dp or	
					M1 A1	$\times$ 100 for expected frequencies			encies	
					111	Â	Il correct an	id sum to 10	)0.	
	$X^2 = 0.04 +$	0.0033 + 0	0.6136 + 0.5	706 + 1.206	9 M1					
	+ 0.7204 = 10.97(5	+ 7.8206			A1	c.	.a.o.			
		1 10		1، ۲						
	(If e.g. only 2 $\chi^2 = 0.04 +$	ap used to $0.0033 \pm 0$	r expected f ) 6148 + 0 5	s then $690 + 1207$	1					
	+ 0.7226	+ 7.8225		070 - 1.207	1					
	= 10.97(9	93))			7.61		11		1) (	
	Refer to $\chi_6^2$ .				MI	A W	now correct	t dt (= cells ped table ar	– 1) from nd ft	
						O	therwise, no	oft if wrong		
	TT 100/	• • • • • •	- A			P	$(X^2 > 10.975)$	5) = 0.0891.		
	Upper 10% po Significant	oint is 10.6	04.		Al Al	N ft	to tt trom he	re 11 wrong.		
	Suggests mod	lel with p =	= 0.25 does 1	not fit.	Al	ft	only c's tes	t statistic.		9
(iv)	Now with $X^2$	= 9.124								
	Refer to $\chi_5^2$ .				M1	A	llow correct	t df (= cells	-2) from	
							therwise. no	oft if wrong	1011. (.	
						P	$(X^2 > 9.124)$	= 0.1042.	,	
	Upper 10% po	oint is 9.23	36.	al dess ft	A1	N	lo ft from he	re if wrong		
	INOT SIGNIFICAT	it. (Sugges	as new mod del is due to	estimation	AI E1		orrect concl	usion. out the effec	et of	4
	of p from	the data.	uer 15 uue 10	-Sumation	L/1	e	stimated p, c	consistent w	rith	
						c	onclusion in	part (iii).		
										18
L	ļ					I				10



## **4771 Decision Mathematics 1**

2.							
(i)							
	n	i	j	k			
	5	1	3	3		B1	
		2	2	8		B1	
		3	1	13		B1	
		4	0	16		B1	
	k = 16					B1	
(ii)	(ii) $f(5) = 125/6 - 35/6 + 1 = 90/6 + 1 = 16$						substituting
	(Need to se	e 125 or 20	A1				
(iii)	cubic comp	olexity				B1	
1						1	



(i)	e.g.	00-47→90 48-79→80 80-95→40 96, 97,98, 99 ignore		M1 A3 A1	some rejected correct proportions (– 1 each error) efficient
(ii)	smaller	proportion rejected		B1	
(iii)	e.g.	90, 90, 90, 80	350	M1 A	A1 A1√
(iv)	e.g.	90, 80, 90, 80 80, 90, 80, 80 90, 40, 80, 90 40, 90, 90, 90 90, 90, 90, 90 80, 80, 40, 90 80, 80, 80, 90 90, 80, 90, 90 90, 40, 40, 80	340 330 300 310 360 290 330 350 250	M1 A3	(−1 each error) √
	prob (lo	ad>325) = 0.6		M1 A	A1
(v)	e.g. fam	ily groups		B1	



4771

4771



# **4776 Numerical Methods**

1(i)	X	у	1st diff	2nd diff			
	-3	-16	1.4				
	-l 1	-2	14	0			<b>EN (1 A 1</b> 1
	1	4	0	-8	and differe	naa aanstant sa guadratia fita	
	3	2	-2	-0	2nd differe	nce constant so quadratic ms	[E1]
( <b>ii</b> )	f(x) = -16 +	-14(x+3)/2	-8(x+3)(x+3)(x+3)(x+3)(x+3)(x+3)(x+3)(x+3)	(x + 1)/8			[M1A1A1A1]
	= -16 +	$7x + 21 - x^2$	- 4x - 3				
	= 2 + 32	$\mathbf{x} - \mathbf{x}^2$					[A1]
							[TOTAL 8]
2(;)	Convincing	algebra to c	lemonstrate	result			<b>EN/1 &amp; 1</b> 1
$\frac{2(1)}{(ii)(\Lambda)}$	Direct subt	raction.	0.0022	result			
$(\mathbf{I})(\mathbf{A})$ ( <b>B</b> )	Using (*).	uotion.	1/(223 609	00+223 6068)	= 0.0022360	57	[D1] [M1A1]
<b>(D</b> )	Second val	ue has manv	more signif	ficant figures (	"more accura	ate") may be implied	[WIIAI]
	Subtraction	of nearly eq	ual quantiti	es loses precis	sion	(interpretation of the second s	[E1]
	Subtraction	t of neurry et	aun quuntiti				[27]
							[TOTAL 7]
2(1)		<b>C</b> ( )					
3(1)	X	$f(\mathbf{x})$					
	0	0.810051		T1 –	0 77709		<b>EN/1</b> 1
	0.8	0.013931		11 – M1 –	0.72798		
	0.4	0.774007		VII =	0.793695		[M1] [M1]
				nence SI –	0.773230	all vo	uluas [ <b>MII</b> ]
(;;)		T2 =	0 761937			un va	Indes [A1]
(11)		$M^{12} =$	0.784069	so S2 =	0 776692		[D1] [M141]
	S2 will be i	much more a	ccurate that	1 S1 so 0 78 of	r 0 777 would	d be justified	[41]
	52 ((11) 60)						[TOTAL 8]
							L J
4(*)			1 0 5-2				
4(1)	X 03	COSX	1 - 0.5X 0.055	error		1 . 1	
	0.5	0.955336	0.955	-0.000336	-0.000352	conaone signs nere	
<b>/••</b>		(1.0.2)	4 0.00022	<i>c</i>		but require correct	D.(1)
(11)		want k 0.3	' = 0.000336	5 (0.0415.00	42 1/24)	sign for k	[M1]
		gives k –	0.041542	(0.0415, 0.04	42, 1/24)		[A1]
							[TOTAL 6]
5	r	0	1	2			
	Xr	3	3	3			
	Xr	2.99	2.9701	2.911194			[M1A1A1]
	Xr	3.01	3.0301	3.091206			
		Derivative	is 2x - 3. Ev	valuates to 3 a	t x = 3		[M1A1]
		3 is clearly	a root, but	the iteration d	oes not conv	erge	[E1]
		Need $-1 <$	g'(x) < 1 at i	root for conve	rgence		[E1]
							[TOTAL 7]

4776	
------	--

[ <b>B</b> 1]		root	sistence of	and hence ex	f(b) below)	f sign (f(a),	ate change of	Demonstra	6(i)
		f(x)	mpe	Х	f(b)	f(a)	b	а	
[M1]		-0.01827	0.05	0.25	0.021031	-0.06429	0.3	0.2	
[M1]		0.002134	0.025	0.275	0.021031	-0.01827	0.3	0.25	
[A1A1A1]		-0.00787	0.0125	0.2625			0.275	0.25	
[subtotal 6]									
						$f_r$	$X_r$	r	( <b>ii</b> )
						-0.06429	0.2	0	
<b>FN (1 4 1)</b>						0.021031	0.3	1	
						0.00241	0.275352	2	
				0 272	· · · · · · · · · · · · · · · · · · ·	-0.0001	0.2/2161	3	
[A1]			secure	or $0.2/2$ as	accept 0.2				
			ster	nod much ta	secant met				
[subtotal 6]									
					$e_{r+1}/e_{r}^{2}$	e,	Xr	r	( <b>iii</b> )
[M1A1]	e col:				- 1 - 1 - 1	0.101496	1.4	0	
[M1A1]	$e/e^2$ col·				1 538329	0.015847	1 314351	1	
[]	0,0 001.				1.525122	0.000383	1 298887	2	
[E1]		onvergence	2nd order c	alues show 2	equal v	= root	1 298504	3	
[]		ch error is	rgence: ea	order conve	second	1000	1.20000.	5	
[E1]	error	he previous e	square of t	ional to the	proport				
[subtotal 6]									
[ <b>TOTAL</b> 18]									
				0.1	0.2	0.4	h	fwd diff:	7(i)
[M1A1A1]				0.48711	0.473525	0.444758	f '(0)		
[B1]		alved	approx h	0.013585	0.028768		diffs		
[subtotal 4]									
				0.1	0.2	04	h	cent diff [.]	( <b>ii</b> )
[M1A1A1]				0 50008	0 498315	0 491631	f'(0)	cont unit.	(11)
[B1]	n	greater than	reductior	0.001765	0.006684		diffs		
[subtotal 4]	e	rd difference	for forwa						
			1-2D I	algebra to	convincing		05 (D d)	(D, d) =	
[M1A1]		<b>7</b> 1	$1 - 2D_2 - 1$	, aigeora to t	convincing		$0.5 (D_1 - u)$	$(D_2 - u) =$	(iii)
[M1A1A1]		D ₁ )/3	$d = (4D_2 -$	algebra to o	convincing	)	0.25 (D ₁ - d	$(D_2 - d) =$	
[subtotal 5]									
[M1A1]				0.500695	25 =	11) - 0.4735	2(0.487)	fwd diff:	( <b>iv</b> )
[M1A1]				0.500668	15) / 3 =	08) - 0.4983	(4(0.5000	cent diff:	
[E1]			ms secure	0.5007 see					
[subtotal 5]									
TOTAL 18									

## **Grade Thresholds**

### Advanced GCE (Subject) (Aggregation Code(s)) January 2009 Examination Series

### Unit Threshold Marks

Unit	t	Maximum Mark	Α	В	С	D	Е	U
All units	UMS	100	80	70	60	50	40	0
4751	Raw	72	61	53	45	37	30	0
4752	Raw	72	60	53	46	40	34	0
4753/01	Raw	72	61	54	47	40	32	0
4753/02	Raw	18	15	13	11	9	8	0
4754	Raw	90	75	66	57	49	41	0
4755	Raw	72	57	49	41	33	26	0
4756	Raw	72	53	47	42	37	32	0
4758/01	Raw	72	61	53	45	37	29	0
4758/02	Raw	18	15	13	11	9	8	0
4761	Raw	72	58	50	42	34	27	0
4762	Raw	72	57	49	41	33	26	0
4763	Raw	72	53	46	39	32	25	0
4766/G241	Raw	72	57	48	40	32	24	0
4767	Raw	72	60	52	45	38	31	0
4768	Raw	72	53	46	39	33	27	0
4771	Raw	72	57	51	45	39	33	0
4776/01	Raw	72	56	49	43	37	30	0
4776/02	Raw	18	14	12	10	8	7	0

### **Specification Aggregation Results**

	Maximum Mark	Α	В	С	D	E	U
3895-3898	300	240	210	180	150	120	0
7895-7898	600	480	420	360	300	240	0

Overall threshold marks in UMS (ie after conversion of raw marks to uniform marks)

The cumulative percentage of candidates awarded each grade was as follows:

	Α	В	С	D	E	U	Total Number of Candidates
3895	18.3	43.5	65.4	83.8	96.0	100.0	640
3896	39.2	58.8	78.4	86.3	96.1	100.0	94
3897	100.0	100.0	100.0	100.0	100.0	100.0	1
7895	22.2	57.6	81.7	93.0	98.1	100.0	186
7896	18.8	56.3	87.5	87.5	93.8	100.0	16

For a description of how UMS marks are calculated see: <u>http://www.ocr.org.uk/learners/ums_results.html</u>

Statistics are correct at the time of publication.

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

**OCR Customer Contact Centre** 

#### 14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

#### www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

