Mathematics (MEI)

Advanced GCE 4754A

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2010
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

Section A

1 $\begin{aligned} & \frac{x}{x^{2}-1}+\frac{2}{x+1}=\frac{x}{(x-1)(x+1)}+\frac{2}{x+1} \\ & =\frac{x+2(x-1)}{(x-1)(x+1)} \\ & =\frac{(3 x-2)}{(x-1)(x+1)} \end{aligned}$ or $\begin{aligned} \frac{x}{x^{2}-1}+ & \frac{2}{x+1}=\frac{x(x+1)+2\left(x^{2}-1\right)}{\left(x^{2}-1\right)(x+1)} \\ & =\frac{3 x^{2}+x-2}{\left(x^{2}-1\right)(x+1)} \\ & =\frac{(3 x-2)(x+1)}{\left(x^{2}-1\right)(x+1)} \\ & =\frac{(3 x-2)}{\left(x^{2}-1\right)} \end{aligned}$	B1 M1 A1 M1 B1 A1 [3]	$x^{2}-1=(x+1)(x-1)$ correct method for addition of fractions or $\frac{(3 x-2)}{x^{2}-1}$ do not isw for incorrect subsequent cancelling correct method for addition of fractions $(3 x-2)(x+1)$ accept denominator as $x^{2}-1 \operatorname{or}(x-1)(x+1)$ do not isw for incorrect subsequent cancelling
$\begin{aligned} & \text { 2(i) When } x=0.5, y=1.1180 \\ & \Rightarrow \quad A \approx 0.25 / 2\{1+1.4142+2(1.0308+1.1180+1.25)\} \\ & =0.25 \times 4.6059=1.151475 \\ & =1.151(3 \text { d.p. })^{*} \end{aligned}$	B1 M1 E1 [3]	4dp (0.125×9.2118) need evidence
(ii) Explain that the area is an over-estimate. or The curve is below the trapezia, so the area is an over- estimate. This becomes less with more strips. or Greater number of strips improves accuracy so becomes less	B1 B1 [2]	or use a diagram to show why
$\text { (iii) } \begin{aligned} V & =\int_{0}^{1} \pi y^{2} d x \\ & =\int_{0}^{1} \pi\left(1+x^{2}\right) d x \\ & =\pi\left[\left(x+x^{3} / 3\right)\right]_{0}^{1} \\ & =1 \frac{1}{3} \pi \end{aligned}$	M1 B1 A1 [3]	allow limits later $x+x^{3} / 3$ exact

$\begin{array}{ll} 4 & \sqrt{4+x}=2\left(1+\frac{x}{4}\right)^{\frac{1}{2}} \\ & =2\left(1+\frac{1}{2} \cdot \frac{x}{4}+\frac{\frac{1}{2} \cdot-\frac{1}{2}}{2}\left(\frac{x}{4}\right)^{2}+\ldots\right) \\ & =2\left(1+\frac{1}{8} x-\frac{1}{128} x^{2}+\ldots\right) \\ & =2+\frac{1}{4} x-\frac{1}{64} x^{2}+\ldots \\ \Rightarrow & \text { Valid for }-1<x / 4<1 \\ \Rightarrow & -4<x<4 \end{array}$	M1 M1 A1 A1 B1 [5]	dealing with $\sqrt{ } 4$ (or terms in $4^{\frac{1}{2}}, 4^{\frac{-1}{2}}, \ldots$ etc) correct binomial coefficients correct unsimplified expression for $(1+\mathrm{x} / 4)^{\frac{1}{2}}$ or $(4+\mathrm{x})^{\frac{1}{2}}$ cao
$\text { 5(i) } \begin{array}{rl} \frac{3}{(y-2)(y+1)} & =\frac{A}{y-2}+\frac{B}{y+1} \\ & =\frac{A(y+1)+B(y-2)}{(y-2)(y+1)} \\ \Rightarrow \quad 3=A(y+1)+B(y-2) \\ y & y \Rightarrow 3=3 A \Rightarrow A=1 \\ y & =-1 \Rightarrow 3=-3 B \Rightarrow B=-1 \end{array}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	substituting, equating coeffs or cover up
$\begin{array}{ll} \text { (ii) } & \frac{d y}{d x}=x^{2}(y-2)(y+1) \\ \Rightarrow & \int \frac{3 \mathrm{~d} y}{(y-2)(y+1)}=\int 3 x^{2} \mathrm{~d} x \\ \Rightarrow & \int\left(\frac{1}{(y-2)}-\frac{1}{y+1}\right) \mathrm{d} y=\int 3 x^{2} \mathrm{~d} x \\ \Rightarrow & \ln (y-2)-\ln (y+1)=x^{3}+c \\ \Rightarrow & \ln \left(\frac{y-2}{y+1}\right)=x^{3}+c \\ \Rightarrow & \frac{y-2}{y+1}=\mathrm{e}^{x^{3}+c}=\mathrm{e}^{x^{3}} . \mathrm{e}^{c}=A \mathrm{e}^{3^{3}} * \end{array}$	M1 B1ft B1 M1 E1 [5]	separating variables $\ln (y-2)-\ln (y+1)$ ft their A, B $x^{3}+c$ anti-logging including c www
$\begin{aligned} & 6 \quad \begin{aligned} \tan (\theta+45) & =\frac{\tan \theta+\tan 45}{1-\tan \theta \tan 45} \\ & =\frac{\tan \theta+1}{1-\tan \theta} \end{aligned} \\ & \Rightarrow \quad \frac{\tan \theta+1}{1-\tan \theta}=1-2 \tan \theta \\ & \Rightarrow \quad 1+\tan \theta=(1-2 \tan \theta)(1-\tan \theta) \\ & \Rightarrow \quad \\ & \Rightarrow \quad 0=2 \tan ^{2} \theta-4 \tan \theta=2 \tan \theta(\tan \theta \\ & \Rightarrow \quad \tan \theta=0 \text { or } 2 \\ & \Rightarrow \quad \theta=0 \text { or } 63.43 \end{aligned}$	M1 A1 M1 A1 M1 A1A1 [7]	oe using sin/cos multiplying up and expanding any correct one line equation solving quadratic for $\tan \theta$ oe www -1 extra solutions in the range

Section B

7(i) $\begin{aligned} & \overrightarrow{\mathrm{AB}}=\left(\begin{array}{l} 100-(-200) \\ 200-100 \\ 100-0 \end{array}\right)=\left(\begin{array}{l} 300 \\ 100 \\ 100 \end{array}\right) * \\ & \mathrm{AB}=\sqrt{ }\left(300^{2}+100^{2}+100^{2}\right)=332 \mathrm{~m} \end{aligned}$	E1 M1 A1 [3]	accept surds
$\begin{aligned} & \text { (ii) } \quad \mathbf{r}=\left(\begin{array}{l} -200 \\ 100 \\ 0 \end{array}\right)+\lambda\left(\begin{array}{l} 300 \\ 100 \\ 100 \end{array}\right) \\ & \\ & \text { Angle is between }\left(\begin{array}{l} 3 \\ 1 \\ 1 \end{array}\right) \text { and }\left(\begin{array}{l} 0 \\ 0 \\ 1 \end{array}\right) \\ & \Rightarrow \quad \cos \theta=\frac{3 \times 0+1 \times 0+1 \times 1}{\sqrt{11} \sqrt{1}}=\frac{1}{\sqrt{11}} \\ & \Rightarrow \quad \\ & \theta=72.45^{\circ} \end{aligned}$	B1B1 M1 M1 A1 A1 [6]	oe $\ldots \text { and }\left(\begin{array}{l} 0 \\ 0 \\ 1 \end{array}\right)$ complete scalar product method(including cosine) for correct vectors 72.5° or better, accept 1.26 radians
(iii) Meets plane of layer when $\begin{aligned} & (-200+300 \lambda)+2(100+100 \lambda)+3 \times 100 \lambda=320 \\ & \Rightarrow \quad 800 \lambda=320 \\ & \Rightarrow \quad \lambda=2 / 5 \\ & \quad \mathbf{r} \end{aligned}=\left(\begin{array}{l} -200 \\ 100 \\ 0 \end{array}\right)+\frac{2}{5}\left(\begin{array}{l} 300 \\ 100 \\ 100 \end{array}\right)=\left(\begin{array}{l} -80 \\ 140 \\ 40 \end{array}\right) . l$ so meets layer at $(-80,140,40)$	M1 A1 M1 A1 [4]	
(iv) Normal to plane is $\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$ Angle is between $\left(\begin{array}{l}3 \\ 1 \\ 1\end{array}\right)$ and $\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$ $\Rightarrow \quad \cos \theta=\frac{3 \times 1+1 \times 2+1 \times 3}{\sqrt{11} \sqrt{14}}=\frac{8}{\sqrt{11} \sqrt{14}}=0.6446 . .$ $\Rightarrow \quad \theta=49.86^{\circ}$ $\Rightarrow \quad$ angle with layer $=40.1^{\circ}$	B1 M1A1 A1 A1 [5]	complete method ft 90-their θ accept radians

$\begin{array}{ll} \text { 8(i) } & \text { At } \mathrm{A}, y=0 \Rightarrow 4 \cos \theta=0, \theta=\pi / 2 \\ & \text { At } \mathrm{B}, \cos \theta=-1, \Rightarrow \theta=\pi \\ & x \text {-coord of } \mathrm{A}=2 \times \pi / 2-\sin \pi / 2=\pi-1 \\ & x \text {-coord of } \mathrm{B}=2 \times \pi-\sin \pi=2 \pi \\ \Rightarrow & \mathrm{OA}=\pi-1, \mathrm{AC}=2 \pi-\pi+1=\pi+1 \\ \Rightarrow & \text { ratio is }(\pi-1):(\pi+1)^{*} \end{array}$	B1 B1 M1 A1 E1 [5]	for either A or B / C for both A and B / C
$\begin{aligned} & \text { (ii) } \begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} \theta}=-4 \sin \theta \\ & \frac{\mathrm{~d} x}{\mathrm{~d} \theta}=2-\cos \theta \\ & \Rightarrow \quad \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y / \mathrm{d} \theta}{\mathrm{~d} x / \mathrm{d} \theta} \\ &=-\frac{4 \sin \theta}{2-\cos \theta} \\ & \text { At A, gradient }=-\frac{4 \sin (\pi / 2)}{2-\cos (\pi / 2)}=-2 \end{aligned} \text { = } \end{aligned}$	B1 M1 A1 A1 [4]	either $\mathrm{d} x / \mathrm{d} \theta$ or $\mathrm{d} y / \mathrm{d} \theta$ www
$\begin{aligned} & \text { (iii) } \frac{\mathrm{d} y}{\mathrm{~d} x}=1 \Rightarrow-\frac{4 \sin \theta}{2-\cos \theta}=1 \\ & \Rightarrow \quad-4 \sin \theta=2-\cos \theta \\ & \Rightarrow \quad \cos \theta-4 \sin \theta=2^{*} \end{aligned}$	M1 E1 [2]	their $\mathrm{d} y / \mathrm{d} x=1$
$\begin{array}{cl} \text { (iv) } & \cos \theta-4 \sin \theta=R \cos (\theta+\alpha) \\ & =R(\cos \theta \cos \alpha-\sin \theta \sin \alpha) \\ \Rightarrow & R \cos \alpha=1, R \sin \alpha=4 \\ \Rightarrow & R^{2}=1^{2}+4^{2}=17, R=\sqrt{ } 17 \\ & \tan \alpha=4, \alpha=1.326 \\ \Rightarrow & \sqrt{ } 17 \cos (\theta+1.326)=2 \\ \Rightarrow & \cos (\theta+1.326)=2 / \sqrt{ } 17 \\ \Rightarrow & \theta+1.326=1.064,5.219,7.348 \\ \Rightarrow & \theta=(-0.262), 3.89,6.02 \end{array}$	M1 B1 M1 A1 M1 A1 A1 [7]	corr pairs accept $76.0^{\circ}, 1.33$ radians inv $\cos (2 / \sqrt{ } 17) \mathrm{ft}$ their R for method -1 extra solutions in the range

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

