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 Prove by induction, that for all positive integers n, 
 

An  = 
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2. (a) Find the Taylor expansion of cos 2x in ascending powers of 
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(5) 

 (b) Use your answer to (a) to obtain an estimate of cos 2, giving your answer to 6 decimal 
places. 

 (3) 
 
 

3.  (a) Use de Moivre’s theorem to show that  
 

sin 5 = sin  (16 cos4  – 12 cos2  + 1). 
(5) 

(b) Hence, or otherwise, solve, for 0   < , 
 

sin 5 + cos   sin 2  = 0. 
(6) 
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 At time t = 0, x = 0 and 
t

x
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d
 = 0.4, 

 
 (a) Use approximations of the form 
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  to obtain estimates of x at t = 0.1, t = 0.2 and t  = 0.3. 

 (5) 

 (b) Find a series solution for x, in ascending powers of t, up to and including the term in t 

3. 
(4) 

 (c) Use your answer to (b) to obtain an estimate of x at t = 0.3 
 (2) 

 

5. The eigenvalues of the matrix M, where 

M = , 
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 are 1 and 2, where 1 < 2.   
 
 (a) Find the value of 1 and the value of 2. 

 (3) 

 (b) Find M–1. 
 (2) 

 (c) Verify that the eignevlaues of M–1 are 1
–1  and 2

–1. 
 (3) 

 

A transformation T : ℝ2  ℝ2 is represented by the matrix M. There are two lines, passing 
through the origin, each of which is mapped onto itself under the transformation T. 
 

 (d) Find cartesian equations for each of these lines. 
 (4) 
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6. The point P represents a complex number z on an Argand diagram, where 
 

z – 6 + 3i = 3z + 2 – i. 
 

 (a) Show that the locus of P is a circle, giving the coordinates of the centre and the radius of this 
circle. 

(7) 
 

 The point Q represents a complex number z on an Argand diagram, where 
 

tan [arg (z + 6)] = 2
1 . 

 
 (b) On the same Argand diagram, sketch the locus of P and the locus of Q.  

 (5) 

(c) On your diagram, shade the region which satisfies both 
 

z – 6 + 3i > 3z + 2 – i and tan [arg (z + 6)] > 2
1 . 

 (2) 

 
 
7. The points A, B and C lie on the plane 1 and, relative to a fixed origin O, they have position 

vectors 
 

a = i + 3j – k,   b = 3i + 3j – 4k   and   c = 5i – 2j – 2k 
 

 respectively. 
 
 (a) Find (b – a)  (c – a).  

(4) 

   (b) Find an equation for 1, giving your answer in the form r.n = p.  
(2) 

 
 The plane 2 has cartesian equation x + z = 3 and 1 and 2 intersect in the line l. 
 
 (c) Find an equation for l, giving your answer in the form (r – p)  q = 0. 

(4) 
 

 The point P is the point on l that is the nearest to the origin O. 
 

(d) Find the coordinates of P. 
 (4) 
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