AQA

Please write clearly in block capitals.

Centre number

Candidate number

Surname
Forename(s) \qquad
Candidate signature \qquad

A-level PHYSICS

Paper 1

Monday 4 June 2018
Afternoon
Time allowed: 2 hours

Materials

For this paper you must have:

- a pencil and a ruler
- a scientific calculator
- a Data and Formulae Booklet.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work you do not want to be marked.

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
6	
$7-31$	
TOTAL	

- Show all your working.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 85 .
- You are expected to use a scientific calculator where appropriate.
- A Data and Formulae Booklet is provided as a loose insert.

A-level Physics data and formulae

For use in exams from the June 2017 Series onwards

DATA - FUNDAMENTAL CONSTANTS AND VALUES

Quantity	Symbol	Value	Units
speed of light in vacuo	c	3.00×10^{8}	$\mathrm{m} \mathrm{s}^{-1}$
permeability of free space	μ_{0}	$4 \pi \times 10^{-7}$	$\mathrm{H} \mathrm{m}^{-1}$
permittivity of free space	ε_{0}	8.85×10^{-12}	F m ${ }^{-1}$
magnitude of the charge of electron	e	1.60×10^{-19}	C
the Planck constant	h	6.63×10^{-34}	J s
gravitational constant	G	6.67×10^{-11}	$\mathrm{N} \mathrm{m}^{2} \mathrm{~kg}^{-2}$
the Avogadro constant	$N_{\text {A }}$	6.02×10^{23}	mol^{-1}
molar gas constant	R	8.31	$\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$
the Boltzmann constant	k	1.38×10^{-23}	JK^{-1}
the Stefan constant	σ	5.67×10^{-8}	$\mathrm{W} \mathrm{m}^{-2} \mathrm{~K}^{-4}$
the Wien constant	α	2.90×10^{-3}	m K
electron rest mass (equivalent to $5.5 \times 10^{-4} \mathrm{u}$)	$m_{\text {e }}$	9.11×10^{-31}	kg
electron charge/mass ratio	$\frac{e}{m_{\mathrm{e}}}$	1.76×10^{11}	$\mathrm{C} \mathrm{kg}{ }^{-1}$
proton rest mass (equivalent to 1.00728 u)	m_{p}	$1.67(3) \times 10^{-27}$	kg
proton charge/mass ratio	$\frac{e}{m_{\mathrm{p}}}$	9.58×10^{7}	C kg ${ }^{-1}$
neutron rest mass (equivalent to 1.00867 u)	$m_{\text {n }}$	$1.67(5) \times 10^{-27}$	kg
gravitational field strength	g	9.81	$\mathrm{Nkg}{ }^{-1}$
acceleration due to gravity	g	9.81	$\mathrm{m} \mathrm{s}^{-2}$
atomic mass unit (1u is equivalent to 931.5 MeV)	u	1.661×10^{-27}	kg

ALGEBRAIC EQUATION
 quadratic equation $\quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

ASTRONOMICAL DATA

Body	Mass $/ \mathrm{kg}$	Mean radius $/ \mathrm{m}$
Sun	1.99×10^{30}	6.96×10^{8}
Earth	5.97×10^{24}	6.37×10^{6}

GEOMETRICAL EQUATIONS

arc length	$=r \theta$
circumference of circle	$=2 \pi r$
area of circle	$=\pi r^{2}$
curved surface area of cylinder	$=2 \pi r h$
area of sphere	$=4 \pi r^{2}$
volume of sphere	$=\frac{4}{3} \pi r^{3}$

Particle Physics

Class	Name	Symbol	Rest energy/MeV
photon	photon	γ	0
lepton	neutrino	v_{e}	0
		v_{μ}	0
	electron	$e^{ \pm}$	0.510999
	muon	$\mu^{ \pm}$	105.659
mesons	π meson	$\pi^{ \pm}$	139.576
		π^{0}	134.972
	K meson	$\mathrm{K}^{ \pm}$	493.821
		$\mathrm{~K}^{0}$	497.762
baryons	proton	p	938.257
	neutron	n	939.551

Properties of quarks

antiquarks have opposite signs

Type	Charge	Baryon number	Strangeness
\mathbf{u}	$+\frac{2}{3} e$	$+\frac{1}{3}$	0
\mathbf{d}	$-\frac{1}{3} e$	$+\frac{1}{3}$	0
\mathbf{s}	$-\frac{1}{3} e$	$+\frac{1}{3}$	-1

Properties of Leptons

	Lepton number	
Particles:	$\mathrm{e}^{-}, \nu_{\mathrm{e}} ; \mu^{-}, v_{\mu}$	+1
Antiparticles:	$\mathrm{e}^{+}, \overline{v_{\mathrm{e}}}, \mu^{+}, \overline{\nu_{\mu}}$	-1

Photons and energy levels

photon energy

$$
\begin{aligned}
E & =h f=\frac{h c}{\lambda} \\
h f & =\phi+E_{\mathrm{k}(\max)} \\
h f & =E_{1}-E_{2} \\
\lambda & =\frac{h}{p}=\frac{h}{m v}
\end{aligned}
$$

photoelectricity
energy levels

Waves

wave speed $\quad c=f \lambda \quad$ period $\quad f=\frac{1}{T}$
$\begin{aligned} & \text { first } \\ & \text { harmonic }\end{aligned} \quad f=\frac{1}{2 l} \sqrt{\frac{T}{\mu}}$
$\begin{aligned} & \text { fringe } \\ & \text { spacing }\end{aligned} \quad w=\frac{\lambda D}{s} \quad \begin{aligned} & \text { diffraction } \\ & \text { grating }\end{aligned} \quad d \sin \theta=n \lambda$ refractive index of a substance s, $n=\frac{c}{c_{s}}$
for two different substances of refractive indices n_{1} and n_{2}, law of refraction $\quad n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$
critical angle $\sin \theta_{c}=\frac{n_{2}}{n_{1}}$ for $n_{1}>n_{2}$

Mechanics

moments \quad moment $=F d$
velocity and acceleration

$$
\begin{array}{ll}
v=\frac{\Delta s}{\Delta t} & a=\frac{\Delta v}{\Delta t} \\
v=u+a t & s=\left(\frac{u+v}{2}\right) t \\
v^{2}=u^{2}+2 a s & s=u t+\frac{a t^{2}}{2}
\end{array}
$$

equations of motion
force
$F=m a$
force
$F=\frac{\Delta(m v)}{\Delta t}$
impulse
$F \Delta t=\Delta(m v)$
work, energy $W=F s \cos \theta$

$$
E_{\mathrm{k}}=\frac{1}{2} m v^{2} \quad \Delta E_{\mathrm{p}}=m g \Delta h
$$

$P=\frac{\Delta W}{\Delta t}, P=F v$
efficiency $=\frac{\text { useful output power }}{\text { input power }}$

Materials

density $\rho=\frac{m}{V} \quad$ Hooke's law $F=k \Delta L$
Young modulus $=\frac{\text { tensile stress }}{\text { tensile strain }} \quad \begin{aligned} & \text { tensile stress }=\frac{F}{A} \\ & \\ & \text { tensile strain }=\frac{\Delta L}{L}\end{aligned}$
energy stored $\quad E=\frac{1}{2} F \Delta L$

Electricity

current and $p d$	$I=\frac{\Delta Q}{\Delta t} \quad V=\frac{W}{Q} \quad R=\frac{V}{I}$
resistivity	$\rho=\frac{R A}{L}$
resistors in series	$R_{\mathrm{T}}=R_{1}+R_{2}+R_{3}+\ldots$
resistors in parallel	$\frac{1}{R_{\mathrm{T}}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\cdots$
power	$P=V I=I^{2} R=\frac{V^{2}}{R}$
emf	$\varepsilon=\frac{E}{Q} \quad \varepsilon=I(R+r)$

Circular motion

$$
\begin{array}{ll}
\begin{array}{c}
\text { magnitude of } \\
\text { angular speed }
\end{array} & \omega=\frac{v}{r} \\
& \omega=2 \pi f
\end{array}
$$

centripetal acceleration

$$
a=\frac{v^{2}}{r}=\omega^{2} r
$$

centripetal force

$$
F=\frac{m v^{2}}{r}=m \omega^{2} r
$$

Simple harmonic motion

acceleration	$a=-\omega^{2} x$
displacement	$x=A \cos (\omega t)$
speed	$v= \pm \omega \sqrt{\left(A^{2}-x^{2}\right)}$
maximum speed	$v_{\max }=\omega A$
maximum acceleration	$a_{\max }=\omega^{2} A$
for a mass-spring system	$T=2 \pi \sqrt{\frac{m}{k}}$
for a simple pendulum	$T=2 \pi \sqrt{\frac{l}{g}}$

Thermal physics

energy to change
temperature
energy to change
state

$$
Q=m l
$$

gas law

$$
Q=m c \Delta \theta
$$

$$
p V=n R T
$$

$$
p V=N k T
$$

kinetic theory model

$$
p V=\frac{1}{3} N m\left(c_{\mathrm{rms}}\right)^{2}
$$

Gravitational fields

force between two masses

$$
F=\frac{G m_{1} m_{2}}{r^{2}}
$$

gravitational field strength
$g=\frac{F}{m}$
magnitude of gravitational
$g=\frac{G M}{r^{2}}$
work done
$\Delta W=m \Delta V$
gravitational potential

$$
\begin{aligned}
& V=-\frac{G M}{r} \\
& g=-\frac{\Delta V}{\Delta r}
\end{aligned}
$$

Electric fields and capacitors

force between two point charges

$$
F=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q_{1} Q_{2}}{r^{2}}
$$

force on a charge

$$
=E Q
$$

field strength for a uniform field
work done
$\Delta W=Q \Delta V$
field strength for a
radial field
$E=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{r^{2}}$
electric potential
field strength $V=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{r}$
capacitance
$E=\frac{\Delta V}{\Delta r}$
$C=\frac{Q}{V}$
$C=\frac{A \varepsilon_{0} \varepsilon_{\mathrm{r}}}{d}$
capacitor energy stored
$E=\frac{1}{2} Q V=\frac{1}{2} C V^{2}=\frac{1}{2} \frac{Q^{2}}{C}$
capacitor charging
$Q=Q_{0}\left(1-\mathrm{e}^{-\frac{t}{R C}}\right)$
decay of charge
$Q=Q_{0} \mathrm{e}^{-\frac{t}{R C}}$
time constant
RC

Magnetic fields

force on a current	$F=B I l$
force on a moving charge	$F=B Q v$
magnetic flux	$\Phi=B A$
magnetic flux linkage	$N \Phi=B A N \cos \theta$
magnitude of induced emf	$\varepsilon=N \frac{\Delta \Phi}{\Delta t}$
	$N \Phi=B A N \cos \theta$
emf induced in a rotating coil	$\varepsilon=B A N \omega \sin \omega t$
alternating current	$I_{\mathrm{rms}}=\frac{I_{0}}{\sqrt{2}} \quad V_{\mathrm{rms}}=\frac{V_{0}}{\sqrt{2}}$
	$\frac{N_{\mathrm{s}}}{N_{\mathrm{p}}}=\frac{V_{\mathrm{s}}}{V_{\mathrm{p}}}$
transformer equations	efficiency $=\frac{I_{\mathrm{s}} V_{\mathrm{s}}}{I_{\mathrm{p}} V_{\mathrm{p}}}$

Nuclear physics

inverse square law for γ radiation

$$
I=\frac{k}{x^{2}}
$$

radioactive decay
activity
half-life
nuclear radius
energy-mass equation
$\frac{\Delta N}{\Delta t}=-\lambda N, N=N_{\mathrm{o}} \mathrm{e}^{-\lambda t}$
$A=\lambda N$
$T_{1 / 2}=\frac{\ln 2}{\lambda}$
$R=R_{0} A^{1 / 3}$
$E=m c^{2}$

OPTIONS

Astrophysics

$$
\begin{aligned}
& 1 \text { astronomical unit }=1.50 \times 10^{11} \mathrm{~m} \\
& 1 \text { light year }=9.46 \times 10^{15} \mathrm{~m} \\
& 1 \text { parsec }=2.06 \times 10^{5} \mathrm{AU}=3.08 \times 10^{16} \mathrm{~m} \\
& =3.26 \mathrm{ly}
\end{aligned}
$$

Hubble constant, $H=65 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$
$M=\frac{\text { angle subtended by image at eye }}{\text { angle subtended by object at unaided eye }}$

telescope in normal adjustment	$M=\frac{f_{0}}{f_{\mathrm{e}}}$
Rayleigh criterion	$\theta \approx \frac{\lambda}{D}$
magnitude equation	$m-M=5 \log \frac{d}{10}$
Wien's law	$\lambda_{\max } T=2.9 \times 10^{-3} \mathrm{~m} \mathrm{~K}$
Stefan's law	$R_{\mathrm{s}} \approx \frac{2 G M}{c^{2}}$
Schwarzschild radius	
Doppler shift for $v \ll c$	$\frac{\Delta f}{f}=-\frac{\Delta \lambda}{\lambda}=\frac{v}{c}$
red shift	$z=-\frac{v}{c}$
Hubble's law	$v=H d$

Medical physics

lens equations
$P=\frac{1}{f}$
$m=\frac{v}{u}$
$\frac{1}{f}=\frac{1}{u}+\frac{1}{v}$
threshold of hearing $\quad I_{0}=1.0 \times 10^{-12} \mathrm{~W} \mathrm{~m}^{-2}$
intensity level intensitylevel $=10 \log \frac{I}{I_{0}}$
absorption
$I=I_{0} e^{-\mu x}$
$\mu_{\mathrm{m}}=\frac{\mu}{\rho}$
ultrasound imaging
half-lives

$$
\frac{I_{\mathrm{r}}}{I_{\mathrm{i}}}=\left(\frac{Z_{2}-Z_{1}}{Z_{2}+Z_{1}}\right)^{2}
$$

$$
\frac{1}{T_{\mathrm{E}}}=\frac{1}{T_{\mathrm{B}}}+\frac{1}{T_{\mathrm{P}}}
$$

Engineering physics

moment of inertia	$I=\Sigma m r^{2}$
angular kinetic energy	$E_{k}=\frac{1}{2} I \omega^{2}$
equations of angular motion	$\omega_{2}=\omega_{1}+\alpha t$
	$\omega_{2}{ }^{2}=\omega_{1}{ }^{2}+2 \alpha \theta$
	$\theta=\omega_{1} t+\frac{\alpha t^{2}}{2}$
θ	$=\frac{\left(\omega_{1}+\omega_{2}\right) t}{2}$
torque	$T=I \alpha$
	$T=F r$

angular momentum \quad angular momentum $=I \omega$
angular impulse
work done
power
$T \Delta t=\Delta(I \omega)$
$W=T \theta$
$P=T \omega$
thermodynamics
$Q=\Delta U+W$
$W=p \Delta V$
adiabatic change
isothermal change
heat engines

$$
\text { efficiency }=\frac{W}{Q_{\mathrm{H}}}=\frac{Q_{\mathrm{H}}-Q_{\mathrm{C}}}{Q_{\mathrm{H}}}
$$

maximum theoretical
efficiency $=$$\frac{T_{\mathrm{H}}-T_{\mathrm{C}}}{T_{\mathrm{H}}}$
work done per cycle $=$ area of loop
input power $=$ calorific value \times fuel flow rate

$$
\begin{aligned}
\text { indicated power }= & (\text { area of } p-V \text { loop }) \\
& \times(\text { number of cycles per second }) \\
& \times(\text { number of cylinders })
\end{aligned}
$$

output or brake power $P=T \omega$
friction power $=$ indicated power - brake power
heat pumps and refrigerators
refrigerator: $C O P_{\mathrm{ref}}=\frac{Q_{\mathrm{C}}}{W}=\frac{Q_{\mathrm{C}}}{Q_{\mathrm{H}}-Q_{\mathrm{C}}}$
heat pump: $\operatorname{COP}_{\mathrm{hp}}=\frac{Q_{\mathrm{H}}}{W}=\frac{Q_{\mathrm{H}}}{Q_{\mathrm{H}}-Q_{\mathrm{C}}}$

Turning points in physics

electrons in fields

$$
\begin{aligned}
& F=\frac{e V}{d} \\
& F=B e v \\
& r=\frac{m v}{B e} \\
& 1 / 2 m v^{2}=e V
\end{aligned}
$$

Millikan's experiment $\quad \frac{Q V}{d}=m g$
$F=6 \pi \eta r v$

Maxwell's formula

$$
c=\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}}
$$

$$
\lambda=\frac{h}{p}=\frac{h}{\sqrt{2 m e V}}
$$

special relativity

$$
t=\frac{t_{0}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}
$$

$$
l=l_{0} \sqrt{1-\frac{v^{2}}{c^{2}}}
$$

$$
E=m c^{2}=\frac{m_{0} c^{2}}{\sqrt{1-\frac{v^{2}}{c^{2}}}}
$$

Electronics

$$
\begin{array}{ll}
\text { resonant frequency } & f_{0}=\frac{1}{2 \pi \sqrt{L C}} \\
Q \text {-factor } & Q=\frac{f_{0}}{f_{\mathrm{B}}}
\end{array}
$$

operational amplifiers:
open loop

$$
V_{\mathrm{out}}=A_{\mathrm{OL}}\left(V_{+}-V_{-}\right)
$$

inverting amplifier

$$
\frac{V_{\text {out }}}{V_{\mathrm{in}}}=-\frac{R_{\mathrm{f}}}{R_{\mathrm{in}}}
$$

non-inverting amplifier
summing amplifier
difference amplifier

$$
\begin{aligned}
& V_{\text {out }}=-R_{\mathrm{f}}\left(\frac{V_{1}}{R_{1}}+\frac{V_{2}}{R_{2}}+\frac{V_{3}}{R_{3}}+\cdots\right) \\
& V_{\text {out }}=\left(V_{+}-V_{-}\right) \frac{R_{\mathrm{f}}}{R_{\mathrm{l}}}
\end{aligned}
$$

Bandwidth requirement:
for $A M$
for $F M \quad$ bandwidth $=2\left(\Delta f+f_{M}\right)$

AQA

Section A

Answer all questions in this section.

| 0 | 1 |
| :--- | :--- | Horizontal escape lanes made of loose gravel have been constructed at the side of some roads on steep hills so that vehicles can stop safely when their brakes fail.

Figure 1 shows an engineer's prediction of how the speed of an unpowered vehicle of mass $1.8 \times 10^{4} \mathrm{~kg}$ will vary with time as the vehicle comes to rest in an escape lane.

Figure 1
speed/
$\mathrm{m} \mathrm{s}^{-1}$

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$

| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ Deduce whether a lane of length 85 m is long enough to stop the vehicle, assuming |
| :--- | :--- | :--- | :--- | that the engineer's graph is correct.

\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{3}$ Discuss the energy transfers that take place when a vehicle is decelerated in an |
| :--- | :--- | :--- | :--- | escape lane.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 1 continues on the next page

| $\mathbf{0}$ | $\mathbf{1}$ | .4 |
| :--- | :--- | :--- | An alternative to an escape lane containing gravel is an escape lane that consists of a ramp. An escape ramp is a straight road with a concrete surface that has a constant upward gradient.

One escape ramp makes an angle of 25° to the horizontal and is 85 m long.
Deduce whether this escape ramp is sufficient to stop the vehicle.
Assume that any frictional forces and air resistance that decelerate the vehicle are negligible.
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{5}$ Discuss whether an escape lane containing gravel or an escape ramp would provide |
| :--- | :--- | :--- | the safer experience for the driver of the vehicle as it comes to rest.

\qquad
\qquad
\qquad
\qquad
\qquad

| $\mathbf{0}$ | $\mathbf{2}$ Table 1 shows results of an experiment to investigate how the de Broglie |
| :--- | :--- | wavelength λ of an electron varies with its velocity v.

Table 1

$\boldsymbol{v} / \mathbf{1 0}^{\mathbf{7}} \mathbf{m ~ s}^{\mathbf{- 1}}$	$\boldsymbol{\lambda} / \mathbf{1 0}^{-\mathbf{1 1}} \mathbf{m}$
1.5	4.9
2.5	2.9
3.5	2.1

$\mathbf{0}$	$\mathbf{2}$.	$\mathbf{1}$ Show that the data in Table 1 are consistent with the relationship $\lambda \propto \frac{1}{v}, ~$

0	2	2

| $\mathbf{0}$ | $\mathbf{2}$. | $\mathbf{3}$ Figure 2 shows the side view of an electron diffraction tube used to demonstrate the |
| :--- | :--- | :--- | wave properties of an electron.

Figure 2

An electron beam is incident on a thin graphite target that behaves like the slits in a diffraction grating experiment. After passing through the graphite target the electrons strike a fluorescent screen.

Figure 3 shows the appearance of the fluorescent screen when the electrons are incident on it.

Figure 3

Explain how the pattern produced on the screen supports the idea that the electron beam is behaving as a wave rather than as a stream of particles.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

0	2	.4
4		

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Figure 4 shows the structure of a violin and Figure 5 shows a close-up image of the tuning pegs.

Figure 4

Figure 5

The strings are fixed at end \mathbf{A}. The strings pass over a bridge and the other ends of the strings are wound around tuning pegs that have a circular cross-section. The tension in the strings can be increased or decreased by rotating the tuning pegs.

[3 marks]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
 When the tension in the string is 25 N , the string vibrates with a first-harmonic frequency of 370 Hz

Show that the mass of a 1.0 m length of the string is about $4 \times 10^{-4} \mathrm{~kg}$

| 0 | 3 | 3 | Determine the speed at which waves travel along the string in question $\mathbf{0 3 . 2}$ when it |
| :--- | :--- | :--- | :--- | vibrates with a first-harmonic frequency of 370 Hz

Question 3 continues on the next page

0	3	4
4	Figure 6	
6		

Figure 6

The string with its initial tension of 25 N is vibrating at a frequency of 370 Hz The diameter of the circular peg is 7.02 mm

Determine the higher frequency that is produced when the string is stretched by rotating the tuning peg through an angle of 75°

Assume that there is no change in the diameter of the string.

| 0 | 4 |
| :--- | :--- | Figure 7 shows a circuit designed by a student to monitor temperature changes.

Figure 7

The supply has negligible internal resistance and the thermistor has a resistance of 750Ω at room temperature. The student wants the output potential difference (pd) at room temperature to be 5.0 V

| $\mathbf{0}$ | $\mathbf{4} . \mathbf{1}$ The $0.25 \mathrm{k} \Omega$ resistor is made of 50 turns of wire that is wound around a |
| :--- | :--- | :--- | non-conducting cylinder of diameter 8.0 mm

Resistivity of the wire $=4.2 \times 10^{-7} \Omega \mathrm{~m}$
Determine the area of cross-section of the wire that has been used for the resistor.
\qquad m^{2}

| $\mathbf{0}$ | $\mathbf{4}$ | $\mathbf{2}$ The student selects a resistor rated at 0.36 W for the $0.25 \mathrm{k} \Omega$ resistor in Figure 7. |
| :--- | :--- | :--- | Determine whether this resistor is suitable.

\qquad
\qquad
\qquad
\qquad
\qquad

$\mathbf{0}$	$\mathbf{4}$.3	Determine the value of R that the student should select.

Give your answer to an appropriate number of significant figures.

0	4	4
4	State and explain the effect on the output pd of increasing the temperature of the	

\qquad
\qquad
\qquad
\qquad

| 0 | 5 | Figure 8 shows a side view of an act performed by two acrobats. Figure 9 shows the |
| :--- | :--- | :--- | view from above.

Figure 8

The acrobats, each of mass 85 kg , are suspended from ropes attached to opposite edges of a circular platform that is at the top of a vertical pole. The platform has a diameter of 2.0 m
A motor rotates the platform so that the acrobats move at a constant speed in a horizontal circle, on opposite sides of the pole.

When the period of rotation of the platform is 5.2 s , the centre of mass of each acrobat is 5.0 m below the platform and the ropes are at an angle of 28.5° to the vertical as shown in Figure 8.

$\mathbf{0}$	$\mathbf{5}$.	$\mathbf{1}$ Show that the linear speed of the acrobats is about $4.5 \mathrm{~m} \mathrm{~s}^{-1}$

0	5	2

tension =

| 0 | 5 | 3 |
| :--- | :--- | :--- | much greater mass than the other.

\qquad

| 0 | 6 |
| :--- | :--- |\quad Figure 10 shows two railway trucks \mathbf{A} and \mathbf{B} travelling towards each other on the same railway line which is straight and horizontal.

Figure 10

The trucks are involved in an inelastic collision. They join when they collide and then move together.

The trucks move a distance of 15 m before coming to rest.
Truck A has a total mass of 16000 kg and truck B has a total mass of 12000 kg Just before the collision, truck \mathbf{A} was moving at a speed of $2.8 \mathrm{~m} \mathrm{~s}^{-1}$ and truck \mathbf{B} was moving at a speed of $3.1 \mathrm{~m} \mathrm{~s}^{-1}$

0	6	1

\qquad

| 0 | 6 | $\mathbf{2}$ Show that the speed of the joined trucks immediately after the collision is about |
| :--- | :--- | :--- | $0.3 \mathrm{~m} \mathrm{~s}^{-1}$

| $\mathbf{0}$ | $\mathbf{6}$. | $\mathbf{3}$ Calculate the impulse that acts on each truck during the collision. |
| :--- | :--- | :--- | Give an appropriate unit for your answer.

impulse =
\qquad unit \qquad

| 0 | 6 | 4 |
| :--- | :--- | :--- | Explain, without doing a calculation, how the motion of the trucks immediately after the collision would be different for a collision that is perfectly elastic.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Section B

Each of Questions $\mathbf{0 7}$ to $\mathbf{3 1}$ is followed by four responses, A, B, C and D.

For each question select the best response.

Only one answer per question is allowed.
For each answer completely fill in the circle alongside the appropriate answer.
CORRECT METHOD WRONG METHODS $\triangle \infty$
If you want to change your answer you must cross out your original answer as shown.

If you wish to return to an answer previously crossed out, ring the answer you now wish to select as shown.

You may do your working in the blank space around each question but this will not be marked. Do not use additional sheets for this working.

$\mathbf{0}$	$\mathbf{7}$	What is a correct unit for the area under a force-time graph?

A Nm

B $\quad \mathrm{kg} \mathrm{m} \mathrm{s}^{-1}$
C $\quad \mathrm{kg} \mathrm{m} \mathrm{s}^{-2}$

D $\quad \mathrm{N} \mathrm{s}^{-1}$

088 A student carries out an experiment to determine the resistivity of a metal wire.
She determines the resistance from measurements of potential difference between the ends of the wire and the corresponding current. She measures the length of the wire with a ruler and the diameter of the wire using a micrometer. Each measurement is made with an uncertainty of 1%

Which measurement gives the largest uncertainty in the calculated value of the resistivity?
[1 mark]

A current
B diameter

C length

D potential difference

 What is the magnitude of specific charge of the fluoride ion?

A $\quad 3.2 \times 10^{-26} \mathrm{C} \mathrm{kg}^{-1}$
B $\quad 8.4 \times 10^{-21} \mathrm{C} \mathrm{kg}^{-1}$
C $\quad 5.0 \times 10^{6} \mathrm{C} \mathrm{kg}^{-1}$
\square

D $\quad 4.5 \times 10^{7} \mathrm{C} \mathrm{kg}^{-1}$

| $\mathbf{1}$ | $\mathbf{0}$ |
| :--- | :--- | What is the minimum frequency of the gamma radiation that could be produced?

A $\quad 2.55 \times 10^{16} \mathrm{~Hz}$
B $\quad 5.10 \times 10^{16} \mathrm{~Hz}$
C $\quad 2.55 \times 10^{22} \mathrm{~Hz}$ \square
D $5.10 \times 10^{22} \mathrm{~Hz}$ \square

| 1 | $\mathbf{1}$ | The Σ^{0} baryon, composed of the quark combination uds, is produced through the strong |
| :--- | :--- | :--- | interaction between a π^{+}meson and a neutron.

$$
\pi^{+}+\mathrm{n} \rightarrow \Sigma^{0}+\mathrm{X}
$$

What is the quark composition of X ?

A us̄ \square
B ud
C ū
D uds̄ \square

$$
{ }_{53}^{131} \mathrm{I} \rightarrow{ }_{54}^{131} \mathrm{Xe}+{ }_{-1}^{0} \mathrm{e}+\mathrm{Y}
$$

Which is a property of particle Y?

A It has a lepton number of +1

B It is an antiparticle \square
C It is negatively charged \square
D It experiences the strong interaction \square

$\mathbf{1}$	$\mathbf{3}$	The diagram shows an energy-level diagram for a hydrogen atom.

\qquad
\qquad
\qquad
ground state
Electrons, each having a kinetic energy of $2.0 \times 10^{-18} \mathrm{~J}$, collide with atoms of hydrogen in their ground state. Photons are emitted when the atoms de-excite.

How many different wavelengths can be observed with incident electrons of this energy?

A 1

B 3

C 6

D 7

| 1 | 4 | Photons of wavelength 290 nm are incident on a metal plate. The work function of the |
| :--- | :--- | :--- | metal is 4.1 eV

What is the maximum kinetic energy of the emitted electrons?

A $\quad 0.19 \mathrm{eV}$ \square
B $\quad 4.3 \mathrm{eV}$ \square
C $\quad 6.9 \mathrm{eV}$ \square
D $\quad 8.4 \mathrm{eV}$ \square

1	5	In the diagram, \mathbf{P} is the source of a wave of frequency 50 Hz

The wave travels to \mathbf{R} by two routes, $\mathbf{P} \rightarrow \mathbf{Q} \rightarrow \mathbf{R}$ and $\mathbf{P} \rightarrow \mathbf{R}$. The speed of the wave is $30 \mathrm{~m} \mathrm{~s}^{-1}$

What is the path difference between the two waves at \mathbf{R} in terms of the wavelength λ of the waves?

A 4.8λ \square
B 8.0λ \square
C $\quad 13.3 \lambda$ \square
D $\quad 20.0 \lambda$ \square

| 1 | 6 | $L i g h t ~ f r o m ~ a ~ p o i n t ~ s o u r c e ~ p a s s e s ~ t h r o u g h ~ a ~ s i n g l e ~ s l i t ~ a n d ~ i s ~ t h e n ~ i n c i d e n t ~ o n ~ a ~ d o u b l e-s l i t ~$ |
| :--- | :--- | :--- | arrangement. An interference pattern is observed on the screen.

What will increase the fringe spacing?

A increasing the separation of the single slit and the double slit \square
B increasing the width of the single slit
C decreasing the distance between the double slits and the screen
D decreasing the separation of the double slits

| $\mathbf{1}$ | $\mathbf{7}$ | A diffraction grating has 500 lines per mm . When monochromatic light is incident normally |
| :--- | :--- | :--- | on the grating the third-order spectral line is formed at an angle of 60° from the normal to the grating.

What is the wavelength of the monochromatic light?

A $\quad 220 \mathrm{~nm}$
B $\quad 580 \mathrm{~nm}$
C $\quad 960 \mathrm{~nm}$
D $\quad 1700 \mathrm{~nm}$

| $\mathbf{1}$ | $\mathbf{8}$ | An electromagnetic wave enters a fibre-optic cable from air. On entering the cable, the |
| :--- | :--- | :--- | wave slows down to three-fifths of its original speed.

What is the refractive index of the core of the fibre-optic cable?

A 0.67

B $\quad 1.33$
C $\quad 1.50$
D $\quad 1.67$

1	9	The diagram shows part of the path of a ray of light through a right-angled prism.

The prism is made of glass of refractive index 1.5
The incident light ray is parallel to the face XY. The ray is refracted towards the face XY.
What is the path of the ray after it is incident on face XY?

B

A

B

C

D \square

$\mathbf{2}$	$\mathbf{0}$	Three coplanar forces F_{1}, F_{2} and F_{3} act on a point object.

Which combination of forces can never produce a resultant force of zero?
[1 mark]

	$\boldsymbol{F}_{\mathbf{1}} / \mathbf{N}$	$\boldsymbol{F}_{\mathbf{2}} / \mathbf{N}$	$\boldsymbol{F}_{\mathbf{3}} / \mathbf{N}$	
A	3	4	5	\square
B	8	8	8	\square
C	2	10	10	\square
D	3	6	10	\square

| 2 | 1 | A non-uniform sign is 0.80 m long and has a weight of 18 N |
| :--- | :--- | :--- | It is suspended from two vertical springs \mathbf{P} and \mathbf{Q}. The springs obey Hooke's law and the spring constant of each spring is $240 \mathrm{~N} \mathrm{~m}^{-1}$

The top end of spring \mathbf{P} is fixed and the top end of spring \mathbf{Q} is adjusted until the sign is horizontal and in equilibrium.

What is the extension of spring \mathbf{Q} ?

A $\quad 0.014 \mathrm{~m}$ \square
B $\quad 0.038 \mathrm{~m}$
C $\quad 0.049 \mathrm{~m}$
D $\quad 0.061 \mathrm{~m}$
$2 \mathbf{2}$ Immediately after take-off from the surface of the Earth, a rocket of mass 12000 kg accelerates vertically upwards at $1.4 \mathrm{~m} \mathrm{~s}^{-2}$

What is the thrust produced by the rocket motor?

A $\quad 1.7 \times 10^{4} \mathrm{~N}$ \square
B $\quad 1.0 \times 10^{5} \mathrm{~N}$ \square
C $\quad 1.3 \times 10^{5} \mathrm{~N}$

D $\quad 1.6 \times 10^{5} \mathrm{~N}$

| 2 | 3 | A projectile is launched with a speed of $25 \mathrm{~m} \mathrm{~s}^{-1}$ at an angle of 35° to the horizontal, as |
| :--- | :--- | :--- | shown in the diagram.

Air resistance is negligible.
What is the time taken for the projectile to return to the ground?

A $\quad 1.5 \mathrm{~s}$ \square
B $\quad 2.1 \mathrm{~s}$ \square
C $\quad 2.9 \mathrm{~s}$

D $\quad 4.2 \mathrm{~s}$ \square

| $\mathbf{2}$ | $\mathbf{4}$ | A steel wire \mathbf{W} has a length l and a circular cross-section of radius r. When \mathbf{W} hangs |
| :--- | :--- | :--- | vertically and a load is attached to the bottom end, it extends by e.

Another wire \mathbf{X} made from the same material has the same load attached to it.
Which length and radius for \mathbf{X} will produce an extension of $\frac{e}{4}$?

	Length of X	Radius of X	
A	0.51	$2 r$	0
B	l	$4 r$	\bigcirc
C	$2 l$	$2 r$	0
D	$4 l$	$4 r$	0

| 2 | 5 | A gas containing doubly-charged ions flows to give an electric current of 0.64 A |
| :--- | :--- | :--- | How many ions pass a point in 1.0 minute?

A $\quad 2.0 \times 10^{18}$

B $\quad 4.0 \times 10^{18}$

C $\quad 1.2 \times 10^{20}$ \square
D $\quad 2.4 \times 10^{20}$ \square

| 2 | 6 | A mobile phone operates at a constant power of 200 mW |
| :--- | :--- | :--- | It has a 3.7 V lithium-ion battery that has a charge capacity of 9400 C

What is the time taken for the battery to discharge completely?

A 2 hours \square
B 48 hours \square
C 120 hours \square
D $\quad 140$ hours

| $\mathbf{2}$ | $\mathbf{7}$ | The two resistors shown are both uniform cylinders of equal length made from the same |
| :--- | :--- | :--- | conducting putty.

The diameter of \mathbf{Y} is twice that of \mathbf{X}. The resistance of \mathbf{Y} is R.
What is the total resistance of the combination?

A $\frac{4 R}{5}$
B $\quad 3 R$
C $4 R$

D $5 R$

2	$\mathbf{8}$	A voltmeter is used to measure potential difference for a component \mathbf{X}. $. ~ . ~$

Which row gives the position and ideal resistance for the voltmeter?

	Position	Ideal resistance	
A	in series with \mathbf{X}	infinite	0
B	in series with \mathbf{X}	zero	\square
C	in parallel with \mathbf{X}	infinite	0
D	in parallel with \mathbf{X}	zero	0

2	9
A body performs simple harmonic motion.	

What is the phase difference between the variation of displacement with time and the variation of acceleration with time for the body?

A 0

B $\quad \frac{\pi}{4} \mathrm{rad}$

C $\quad \frac{\pi}{2} \mathrm{rad}$ \square

D $\quad \pi \mathrm{rad}$

| $\mathbf{3}$ | $\mathbf{0}$ | An object of mass 0.15 kg performs simple harmonic motion. It oscillates with amplitude |
| :--- | :--- | :--- | 55 mm and frequency 0.80 Hz

What is the maximum value of its kinetic energy?

A $\quad 5.7 \times 10^{-3} \mathrm{~J}$

B $\quad 11 \times 10^{-3} \mathrm{~J}$
C $\quad 0.57 \mathrm{~J}$
D $\quad 11 \mathrm{~J}$ \square

| 3 | $\mathbf{1}$ | Which graph shows how the gravitational potential energy E_{p} of a simple pendulum varies |
| :--- | :--- | :--- | with displacement s from the equilibrium position?

B

C

D

A \square
B
C \square
D \qquad

END OF QUESTIONS

Copyright information

For confidentiality purposes, from the November 2015 examination series, acknowledgements of third party copyright material will be published in a separate booklet rather than including them on the examination paper or support materials. This booklet is published after each examination series and is available for free download from www.aqa.org.uk after the live examination series.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team, AQA, Stag Hill House, Guildford, GU2 7XJ.

Copyright © 2018 AQA and its licensors. All rights reserved.

