

Mark Scheme (Results) Summer 2010

GCE

GCE Statistics S3 (6691/01)

Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/Aboutus/contact-us/

Summer 2010 Publications Code UA024774 All the material in this publication is copyright © Edexcel Ltd 2010

Hypothesis Tests (Final M1A1)

For an incorrect comparison (e.g. probability with *z* value) even with a correct statement and/or comment award MOA0

For a correct or no comparison with <u>more than one statement one of which is false</u> Award M0A0 (This is compatible with the principle above of contradictory statements being penalised)

Apply these rules to all questions

edexcel

June 2010 Statistics S3 6691 Mark Scheme

Question Number	Scheme	Marks							
Q1	$H_0: \mu = 80, H_1: \mu > 80$	B1,B1							
	$z = \frac{83 - 80}{15} = 2$	M1A1							
	$\overline{\sqrt{100}}$								
	2 > 1.6449 (accept 1.645 or better)	B1							
	Reject H_0 or significant result or in the critical region Managing director's claim is supported.	M1 A1 7							
	1 st B1 for H _{0.} They must use μ not <i>x</i> , <i>p</i> , λ or \overline{x} etc 2 nd B1 for H ₁ (must be > 80). Same rules about μ .								
	1 st M1 for attempt at standardising using 83, 80 and $\frac{15}{\sqrt{100}}$. Can accept <u>+</u> .								
	May be implied by $z = \pm 2$ 1 st A1 for + 2 only								
	$ \begin{array}{lll} 3^{rd} B1 & \text{for } \pm 1.6449 \text{ seen (or probability of } 0.0228 \text{ or better)} \\ 2^{nd} M1 & \text{for a correct statement about "significance" or rejecting } H_0 (\text{or } H_1) \text{ based or and their } 1.6449 (\text{provided it is a recognizable critical value from normal transformed by the probability } (< 0.5) \text{ and significance level of } 0.05. \\ & \text{Condone their probability } > 0.5 \text{ compared with } 0.95 \text{ for the } 2^{nd} \text{ M1} \end{array} $								
	2 nd A1 for a correct contextualised comment. Must mention "director" and "claim" and "use of Internet". No follow through.	or "time"							
2 nd M1A1	If no comparison or statement is made but a correct contextualised comment is given th implied.	ne M1 can be							
	If a comparison is made it must be <u>compatible</u> with statement otherwise M0 e.g. comparing 0.0228 with 1.6449 is M0 or comparing probability 0.9772 with 0.05 comparing -2 with - 1.6449 is OK provided a correct statement accompanies it condone -2 >-1.6449 provided their statement correctly rejects H ₀ .	is M0							
Critical Region	They may find a critical region for \overline{X} : $\overline{X} > 80 + \frac{15}{\sqrt{100}} \times 1.6449 = $ awrt 82.5								
	1 st M1 for $80 + \frac{15}{\sqrt{100}} \times (z \text{ value})$								
	3 rd B1 for 1.645 or better								
	1 st A1 for awrt 82.5 The rest of the marks are as per the scheme.								

Question Number	Scheme	Marks
Q2	$[P \sim N(90,9) \text{ and } J \sim N(91,12)]$	
(a)	$(J - P) \sim N(1, 21)$	M1, A1
	P(J < P) = P(J - P < 0)	
	(0-1)	
	$= P\left(Z < \frac{0-1}{\sqrt{21}}\right)$	dM1
	= P(Z < -0.2182)	
	=1-0.5871=0.4129 awrt (0.413 ~ 0.414)	A1 (4)
	calculator (0.4136)	(4)
(b)	$X = (J_1 + J_2 + \dots + J_{60}) - (P_1 + P_2 + \dots + P_{60})$	M1
		B1
	$Var(X) = 60 \times 9 + 60 \times 12 = 1260$	A1
	$P(X > 120) = P\left(Z > \frac{120 - 60}{\sqrt{1260}}\right)$	M1
		141 1
	= P(Z > 1.69030)	
	=1-0.9545=0.0455 awrt (0.0455)	A1
		(5)
		9
(a)	1^{st} M1for attempting $J - P$ and $E(J - P)$ or $P - J$ and $E(P - J)$ 1^{st} A1for variance of 21 (Accept 9 + 12). Ignore any slip in μ here. 2^{nd} dM1for attempting the correct probability and standardising with their mean and This mark is dependent on previous M so if $J - P$ (or $P - J$) is not being used If their method is not crystal clear then they must be attempting $P(Z < -ve va)$ $P(Z > +ve value)$ i.e. their probability after standardisation should lead to a 	d score M0 alue) or prob. < 0.5
	The first 3 marks may be implied by a correct answer	
(b)	1 st M1 for a clear attempt to identify a correct form for <i>X</i> . This may be implied by c variance of 1260	orrect
	B1 for $E(X) = 60$. Can be awarded even if they are using $X = 60J - 60P$. Allow	P - J and -60
	1^{st} A1 for a correct variance. If 1260 is given the M1 is scored by implication.	
	2 nd M1 for attempting a correct probability and standardising with 120 and their 60 a	
	If the answer is incorrect a full <u>expression</u> must be seen following through the seen following through the second seco	
	for M1 e.g. $P\left(Z > \frac{120 - \text{their } 60}{\sqrt{\text{their variance}}}\right)$. If using -60, should get $P\left(Z < \frac{-120 - \sqrt{120}}{\sqrt{120}}\right)$	$\frac{-60}{\text{variance}}$
Use of means	Attempt to use $\overline{J} - \overline{P}$ for 1 st M1, E($\overline{J} - \overline{P}$) = 1 for B1 and Var($\overline{J} - \overline{P}$) = 0.3 Then 2 nd M1 for standardisation with 2, and their 1 and 0.35	5 for A1

Questic Numbe		Scheme		Marks
Q3 ((a)	$E \sim N(0, 0.5^2)$ or	$X \sim N(w, 0.5^2)$	
		$P(E < 0.6) = P(Z < \frac{0.6}{0.5})$ or = $P(Z < 1.2)$	$P(X-w < 0.6) = P(Z < \frac{0.6}{0.5})$	M1
		$= 2 \times 0.8849 - 1 = 0.7698$	awrt 0.770	A1 (2)
((b)	$\overline{E} \sim N\left(0, \frac{1}{64}\right)$ or \overline{X}	$\sim N\left(w, \frac{0.5^2}{16}\right)$	(2) M1
		$P(\overline{E} < 0.3) = P(Z < \frac{0.3}{\frac{1}{8}}) $ or $P(\overline{X} < \frac{1}{8})$	$F - w < 0.3) = P\left(Z < \frac{0.3}{\frac{1}{8}} \right)$	M1, A1
		= P(Z < 2.4) = 2×0.9918-1=0.9836	awrt 0.984	A1 (4)
((c)	$35.6 \pm 2.3263 \times \frac{1}{8}$		M1 B1
		(35.3, 35.9)		A1,A1 (4) 10
((a)		ney must have the 0.6) and attempting	
		1^{st} A1 for awrt 0.770. NB an answer of 0.3	be given for 0.8849 - 0.1151 seen as fin 849 or 0.8849 scores M0A0 (since it in d by a correct answer	
((b)	1 st M1 for a correct attempt to define \overline{E} or \overline{X}	but must attempt $\frac{\sigma^2}{n}$. Condone labell	ing as E or X
		This mark may be implied by standard	lisation in the next line.	
		2 nd M1 for identifying a correct probability sta 1 st A1 for correct standardisation as printed of	atement using \overline{E} or \overline{X} . Must have 0.3 a r better	and
		2^{nd} A1 for awrt 0.984	nplied by a correct answer.	
Sum 16, n	not	1^{st} M1 for correct attempt at suitable sum dis 2^{nd} M1 for identifying a correct probability. N	tribution with correct variance (= $16 \times$ Must have 4.8 and 11	$(\frac{1}{4})$
mea	ans	1^{st} A1 for correct standardisation i.e. need to		
	(c)		$\sqrt{4}$	
	(c)	M1 for $35.6 \pm z \times \frac{0.5}{\sqrt{16}}$		
		B1for 2.3263 or better. Use of 2.33 will 1 1^{st} A1for awrt 35.3 2^{nd} A1for awrt 35.9	lose this mark but can still score ³ / ₄	

Que: Num	stion Iber		Scheme									Marks
Q4	(a)		Distance rank	1	2	3	4	5	6	7		
			Depth rank	1	2	4	3	6	7	5		M1
			$\left d\right $	0	0	1	1	1	1	2		N#1
			d^2	0	0	1	1	1	1	4		M1
	(b)	$H_0: \rho =$ Critical $r_s < 0.8$ The reador insu- or insu- or the	$= 8$ $= 1 - \frac{6 \times 8}{7 \times 48}$ $= \frac{6}{7} = 0.857$ $= 0, H_1 : \rho > 0$) level is gnifican um is no lence for lent evid	t eviden t correct researcl ence tha	(at 1%) her's cla t water g	level). im gets deep				k.	M1A1 M1 A1 (6) B1 B1 M1 A1ft (4) 10
	(a) (b)	1 st M1 2 nd M1 3 rd M1 1 st A1 4 th M1 2 nd A1 1 st B1 2 nd B1 M1 A1ft	required for awrt for both l for cv of for a corr	pting d f pting \sum of 8 (or 1 f the cor (±) 0.857 (±) 0.852 rect state rect state (from b hrough t	for their $\frac{1}{2}d^2$ (mu 04 for rect form 7. Sign s rect form (accept <u>-</u> ment rel (accept <u>-</u> ment rel ank)" an heir r_s a	ranks. M st be usin everse ra- nula with should co- ms of ρ , \pm) ating the sed common d "depth nd their	Aust be ung ranks unking) their \sum orrespon H_1 mus eir r_s with ment. M	sing ran) $\int d^2$. If d to rank t be one h their cv ust ment er)"	ks. answer f tail and v but cv tion "res	use of 10 compatib must be s earcher"	14 should ble with such tha	

Question Number	Scheme											
Q5	Income	Finances	Worse	Same	Better							
	Under £1	15 000	10.54	10.54	12.92	34	2.61					
	£15 000	and above	20.46	20.46	25.08	66	M1					
			31	31	38	100	A1					
	H_0 : State of finances and income are independent (not associated)											
	H_1 : State of finances and income are not independent (associated)											
	O _i	E_i	$\frac{\left(O_i - E_i\right)^2}{E_i}$	O_i^2								
	l	L	E_i	E_i								
	14	10.54	1.1358	18.59								
	11	10.54	0.0200	11.48			M 1					
	9	12.92	1.1893	6.269								
	17	20.46	0.5851	14.12			A1					
	20	20.46	0.0103	19.55								
	29	25.08	0.6126	33.53								
	$\sum \frac{(O_i - E_i)^2}{E_i} = 3.553 \text{or} \sum \frac{O_i^2}{E_i} - 100 = 103.553 100 = 3.553 \text{ (awrt 3.55)}$											
	v = (3-1)(2-1) = 2											
	v = (3 - 1)(2 - 1) = 2 cv is 5.991											
	3.553 < 5.991 so insufficient evidence to reject H ₀ or not significant There is no evidence of association between state of finances and income.											
	There is no evidence of association between state of finances and income.											
	1 st M1 for some use of $\frac{\text{Row Total} \times \text{Col.Total}}{\text{Grand Total}}$. May be implied by correct E_i											
	Grand Total 1 st A1 for all expected frequencies correct											
	B1	for both hypotheses. Must mention "state" or "finances" and "income" at leas										
		Use of "relationship" or "correlation" or "connection" is B0										
	2 nd M1											
	2 nd A1	_										
	3^{rd} M1											
	3^{rd} M1 for a correct statement linking their test statistic and their cv. Must be χ^2 1 4^{th} A1 for a correct comment in context - must mention "state" or "finances" and " condone "relationship" or "connection" here but not "correlation". No follo e.g. "There is no evidence of a relationship between finances and income"											

Question Number					Scheme	<u>)</u>					Marks	
Q6		Distance from centre of site (m) 0-1										
	b-a		1		1	2	2	3	3	_	M1	
	No of artefacts		2		15	44	37	52	58		. 1	
	$P(a \le X)$	< <i>b</i>)	$\frac{1}{12}$	_	$\frac{1}{12}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{4}$	$\frac{1}{4}$		A1	
	$228 \times P(a \le$	$\overline{X < b}$	1		12	38	38	57	57		A1	
				,	17	00	00	07	07]		
	Class	O_i	$D_i = E_i = \frac{(O_i - E_i)^2}{E_i}$		$\frac{O_i - E_i)^2}{E_i}$	$\frac{O_i^2}{E_i}$						
	0-1	22	19	$\frac{9}{19}$	= 0.4736	25.5	57					
	1-2	15	19	$\frac{16}{10}$	= 0.8421	11.8	34				M1	
	2-4	44	38		= 0.9473		94					
	4-6	37	38	50	= 0.0263)2					
	6-9	52	57	$\frac{25}{57}$	= 0.4385	47.4	3				A1	
	9-12	58	57	$\frac{1}{57}$	= 0.0175	59.0)1					
	H ₀ : <u>continuous uniform</u> distribution <u>is</u> a good fit B1											
	H ₁ : <u>continuous uniform</u> distribution <u>is not</u> a good fit											
	$\sum \frac{(O_i - E_i)^2}{E_i} = \frac{313}{114} = 2.75 \text{ or } \sum \frac{O_i^2}{E_i} - 228 = 230.745 228 = \dots (awrt \ 2.75)$										dM1A1 B1	
	v = 6 - 1 = 5 $\chi_5^2(0.05) = 11.070$ (ft their v i.e. $\chi_v^2(0.05)$)											
	$\chi_5^2(0.05) = 1$	B1ft										
	2.75<11.070, insufficient evidence to reject H_0										M1	
	Continuous uniform distribution is a suitable model											
	1 st M1 for a 1 st A1 for a 2 nd A1 for a	correct	probal	oilitie	es		empting p	proportions	/probs. <u>or</u>	for 1:2	2:3 ratio seen	
	2^{nd} M1 for a	2^{nd} M1 for attempting $\frac{(O-E)^2}{E}$ or $\frac{O^2}{E}$, at least 3 correct expressions or values.										
		Follow through their E_i provided they are not all = 38										
	3 rd A1 for a correct set of calcs - 3 rd or 4 th column. (2 dp or better and allow e.g. 0.94) 3 rd dM1 dependent on 2nd M1 for attempting a correct sum or calculation (must see at lea and +)) t least 3 terms	
	4 th M1 for a correct statement based on their test statistic (> 1) and their cv (> 3.8) Contradictory statements score M0 e.g. "significant" do not reject H_0 .										5	
					t suggesting				0	able.	No ft	

Quest Numb		Scheme	Mark	(S					
Q7	(a)	Label full time staff 1-6000, part time staff 1-4000	M1						
		Use random numbers to select	M1						
		Simple random sample of 120 full time staff and 80 part time staff	A1	(3)					
	(b)	Enables estimation of statistics / errors for each strata <u>or</u> "reduce variability" <u>or</u> "more representative" <u>or</u> "reflects population structure" NOT "more accurate"							
	(c)	$H_{0}: \mu_{f} = \mu_{p}, H_{1}: \mu_{f} \neq \mu_{p} $ (accept μ_{1}, μ_{2})	B1						
		s.e. $= \sqrt{\frac{21}{80} + \frac{19}{80}}, \qquad z = \frac{52 - 50}{\sqrt{\frac{21}{80} + \frac{19}{80}}} = (2\sqrt{2})$	M1,M1						
		= 2.828 (awrt 2.83)	A1						
		Two tailed critical value z = 2.5758 (or prob of awrt 0.002 (<0.005) or 0.004 (<0.01))	B1						
		[2.828 > 2.5758 so] significant evidence to reject H ₀	dM1						
		There is evidence of a difference in policy awareness between full time and part time staff	A1ft	(7)					
	(d)	Can use mean full time and mean part time	B1						
		~ Normal	B1	(2)					
	(e)	Have assumed $s^2 = \sigma^2$ or variance of sample = variance of population	B1	(1)					
	(f)	2.53 < 2.5758, not significant <u>or</u> do not reject H ₀	M1						
		So there is insufficient evidence of a difference in mean awareness	A1ft	(2)					
	(g)	Training course has closed the gap between full time staff and part time staff's mean awareness of company policy.							
	(a)	 1st M1 for attempt at labelling full-time and part-time staff. One set of correct numbers 2nd M1 for mentioning use of random numbers 1st A1 for s.r.s. of 120 full-time and 80 part-time 	ers.	17					
	(c)	1 st M1 for attempt at s.e condone one number wrong . NB correct s.e. = $\sqrt{\frac{1}{2}}$							
		2 nd M1 for using their s.e. in correct formula for test statistic. Must be $\frac{\pm (52-50)}{\sqrt{\frac{p}{a}+\frac{r}{s}}}$							
		3 rd dM1 dep. on 2nd M1 for a correct statement based on their normal cv and their tes 2 nd A1 for correct comment in context. Must mention "scores" or " policy awareness of "staff". Award A0 for a one-tailed comment. Allow ft							
	(d)	1 st B1 for mention of mean(s) <u>or</u> use of \overline{X} , provided \overline{X} clearly refers to full-time 2 nd B1 for stating that distribution can be assumed normal e.g. "mean score of the test is normally distributed" gets B1B1	or part-tii	me					
	(f)	M1 for correct statement (may be implied by correct contextualised comment) A1 for correct contextualised comment. Accept "no difference in mean scores".	Allow ft						
	(g)	B1 for correct comment in context that implies training was effective. This must be supported by their (c) and (f). Condone one-tailed comment he	ere.						

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481

Email publications@linneydirect.com

Order Code UA024774 Summer 2010

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH