GCE

Mathematics (MEI)

Advanced GCE
Unit 4769: Statistics 4

Mark Scheme for June 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2011
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

4769 June 2011 Qu 1

4769 June 2011 Qu 2

	$n=2 \quad \mathrm{f}(x)=\frac{1}{2} \mathrm{e}^{-x / 2}$	
	$\mathrm{M}(\theta)=\mathrm{E}\left(\mathrm{e}^{\theta X}\right)=\int_{0}^{\infty} \frac{1}{2} \mathrm{e}^{-x\left(\frac{1}{2}-\theta\right)} \mathrm{d} x$	A1 Any equivalent form
	$=\frac{1}{2}\left[\frac{e^{-x\left(\frac{1}{2}-\theta\right)}}{-\left(\frac{1}{2}-\theta\right)}\right]_{0}^{\infty} \quad[\mathbf{A} 1]=\frac{\frac{1}{2}}{\frac{1}{2}-\theta} \quad[\mathbf{A} 1]=(1-2 \theta)^{-1} \quad[\mathrm{~A} 1]$	A1, A1, A1 for each expression, as shown, beware printed answer
	$n=4 \quad \mathrm{f}(x)=\frac{1}{4} x \mathrm{e}^{-x / 2}$	
	$\mathrm{M}(\theta)=\int_{0}^{\infty} \frac{1}{4} x \mathrm{e}^{-x\left(\frac{1}{2}-\theta\right)} \mathrm{d} x$	M1 for attempt to integrate this by parts
	$=\frac{1}{4}\left\{\left[\frac{x \mathrm{e}^{-x\left(\frac{1}{2}-\theta\right)}}{-\left(\frac{1}{2}-\theta\right)}\right]_{0}^{\infty}[\text { A1 }]-\int_{0}^{\infty} \frac{\mathrm{e}^{-x\left(\frac{1}{2}-\theta\right)}}{-\left(\frac{1}{2}-\theta\right)} \mathrm{d} x[\text { A1] }\}\right.$	A1, A1 for each component, as shown
	$=\frac{1}{4}\left\{[0-0][\mathbf{A 1}]+\frac{1}{\frac{1}{2}-\theta} \cdot 2(1-2 \theta)^{-1}[\mathbf{A 1}]\right\}$	A1, A1 for each component, as shown
	$=\frac{1}{2} \frac{1}{\frac{1}{2}(1-2 \theta)}(1-2 \theta)^{-1}=(1-2 \theta)^{-2}$	A1 for final answer, beware printed answer
		[10]
(ii)	Mean $=\mathrm{M}^{\prime}(0) \quad \mathrm{M}^{\prime}(\theta)=-2\left(-\frac{n}{2}\right)(1-2 \theta)^{-\frac{n}{2}-1}=n(1-2 \theta)^{-\frac{n}{2}-1}$	M1 A1
	\therefore mean $=n$	A1
	Variance $=\mathrm{M}^{\prime \prime}(0)-\left\{\mathrm{M}^{\prime}(0)\right\}^{2}$	
	$\mathrm{M}^{\prime \prime}(\theta)=n\left(-\frac{n}{2}-1\right)(-2)(1-2 \theta)^{-\frac{n}{2}-2}=n(n+2)(1-2 \theta)^{-\frac{n}{2}-2}$	M1 A1
	$\therefore \mathrm{M}^{\prime \prime}(0)=n(n+2)$	A1
	\therefore variance $=n(n+2)-n^{2}=2 n$	A1
[Note. This part of the question may also be done by expanding themgf.]		[7]

Solution continued on next page

4769 June 2011 Qu 2 continued

(i)	Type I error: rejecting null hypothesis [B1] when it is true [B1] Type II error: accepting null hypothesis [B1] when it is false [B1] OC: P (accepting null hypothesis $[\mathrm{B} 1]$ as a function of the parameter under investigation [B1]) Power: P (rejecting null hypothesis $[B 1]$ as a function of the parameter under investigation [B1])	8 separate B1 marks for components of answer, as shown Allow B1 out of 2 for $\mathrm{P}(. .$. Allow B1 out of 2 for $\mathrm{P}(\ldots)$ P(Type II error \| the true value of the parameter) scores B1+B1 P (Type I error \| the true value of the parameter) scores B1+B1. "1-OC" as definition scores zero.
(ii)	$X \sim \mathrm{~N}(\mu, 25) \quad \mathrm{H}_{0}: \mu=94 \quad \mathrm{H}_{1}: \mu>94$ We require $0.02=\mathrm{P}\left(\right.$ reject $\left.\mathrm{H}_{0} \mid \mu=94\right)=\mathrm{P}(\bar{X}>c \mid \mu=94)$ $\begin{aligned} & =\mathrm{P}(\mathrm{~N}(94,25 / n)>c)=\mathrm{P}\left(\mathrm{~N}(0,1)>\frac{c-94}{5 / \sqrt{n}}\right) \\ & \therefore \frac{c-94}{5 / \sqrt{n}}=2.054 \end{aligned}$ We also require $0.95=\mathrm{P}\left(\right.$ reject $\left.\mathrm{H}_{0} \mid \mu=97\right)$ $\begin{aligned} & =\mathrm{P}(\mathrm{~N}(97,25 / n)>c)=\mathrm{P}\left(\mathrm{~N}(0,1)>\frac{c-97}{5 / \sqrt{n}}\right) \\ & \therefore \frac{c-97}{5 / \sqrt{n}}=-1.645 \end{aligned}$ \therefore we have $c=94+\frac{10.27}{\sqrt{n}}$ and $c=97-\frac{8.225}{\sqrt{n}}$ Attempt to solve; $c=95.666$ [allow 95.7 or awrt] $\sqrt{ } n=6.165, \quad n=38.01$ Take n as "next integer up" from candidate's value	M1 M1 for first expression M1 for standardising B1 for 2.054 M1 for first expression M1 for standardising B1 for -1.645 M1 two equations A1 both correct (FT any previous errors) M1 A1 c.a.o. A1 c.a.o. A1
(iii)	Power function: step function from 0 with step marked at 94 to height marked as 1	G1 G1 G1 Zero out of 3 if step is wrong way round.

(a) Each E2 in this part is available as E2, E1, E0.
(i) Description of situation where randomised blocks would be suitable, ie

E2
one extraneous factor (eg stream down one side of a field).
Explanation of why RB is suitable (the design allows the extraneous factor to be "taken out "separately).

Explanation of why LS is not appropriate (eg: there is only one extraneous factor; LS would be unnecessarily complicated; not enough degrees of freedom would remain for a sensible estimate of experimental error).
(ii) Description of situation where Latin square would be suitable, ie two extraneous factors (and all with same number of levels) (eg streams down two sides of a field).

Explanation of why LS is suitable (the design allows the extraneous factors to be "taken out "separately).

Explanation of why RB is not appropriate (RB cannot cope with two extraneous factors).

E2
(b) Totals are 56.557 .460 .682 .3 from samples of sizes 4354

Grand total 256.8 "Correction factor" $C F=256.8^{2} / 16=4121.64$

Total SS $=4471.92-$ CF $=350.28$
Between treatments $S S=\frac{56.5^{2}}{4}+\frac{57.4^{2}}{3}+\frac{60.6^{2}}{5}+\frac{82.3^{2}}{4}-C F$

$$
=4324.1103-C F=202.47
$$

Residual SS (by subtraction) = 350.28-202.47 = 147.81

Source of variation	SS	df	MS [M1]	MS ratio [M1]
Between treatments	202.47	3 [B1]	67.49	$5.47(92)$ [A1 cao]

| Residual | 147.81 | 12 | [B1] |
| :--- | :--- | :--- | :--- |$\quad 12.3175$

Total
350.2815

Refer MS ratio to $F_{3,12}$.
Upper 5\% point is 3.49.
Significant.
Seems the effects of the treatments are not all the same.

M1 for attempt to form three sums of squares.
M1 for correct method for any two.

A1 if each
calculated SS is correct.

5 marks within the table, as shown

M1 No FT if wrong
A1 No FT if wrong
E1
E1

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

