

Mark Scheme (Results)

June 2011

GCE Statistics S3 (6691) Paper 1

ALWAYS LEARNING

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025 or visit our website at <u>www.edexcel.com</u>.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our **Ask The Expert** email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

June 2011 Publications Code UA028846 All the material in this publication is copyright © Edexcel Ltd 2011

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - B marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod benefit of doubt
- ft follow through
- the symbol will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- L The second mark is dependent on gaining the first mark

June 2011 Statistics S3 6691 Mark Scheme

Question Number	Scheme	Marks
1.	X_1, X_2, \dots, X_n is a random sample of size <i>n</i> , for large <i>n</i> ,	B1
	drawn from a population of any distribution with mean μ and variance σ^2	B1
	then \overline{X} is (approximately) $N\left(\mu, \frac{\sigma^2}{n}\right)$	B1
		(3
	1 st B for large sample or equivalent 2 nd B for 'population of any distribution' or 'any population' 3 rd B require mean or symbol and normal (parameters not required)	

Question Number					Scheme	9			Marks	3
2. (a)	$ \begin{array}{rcl} \hline Town \\ h rank \\ c rank \\ \hline d \\ d^2 \end{array} $ $ \sum d^2 = 28 \\ r_s = 1 \\ = 0. \end{array} $	$ \begin{array}{r} A \\ 1 \\ 4 \\ $	B 5 3 2 4	C 2 2 0 0	D 3 1 2 4	E 7 6 1	F 4 7 3 9	G 6 5 1 1	M1 M1 M1A1 M1 A1	
(b)	H ₀ : $\rho = 0, 1$ Critical value 0.5<0.7857 Councillor'	ues are <i>i</i> insuffic	$r_s = \pm 0.7$ ient evic	dence to) reject H	0			B1 B1ft M1 A1ft	(6) (4) 10

Question Number	Scheme	Marks
	Scheme 1^{st} M1for an attempt to rank the hardship against calls 2^{nd} M1for attempting d for their ranks. Must be using ranks. 3^{rd} M1for attempting $\sum d^2$ (must be using ranks) 1^{st} A1for sum of 28 (or 84) 4^{th} M1for use of the correct formula with their $\sum d^2$. If answer is notcorrect an expression is required. 2^{nd} A1for awrt 0.5 (or -0.5) 1^{st} B1for both hypotheses in terms of ρ , H1 must be two tail. 2^{nd} B1for cv of ± 0.7857 (or 0.7143 to ft from 1-tailed H1)M1for a correct statement relating their r_s with their cv but cv mustbe such that $ cv < 1$ A1ftfor a correct contextualised comment. Must mention"Councillor" and "claim" or "hardship" and "number of calls (to the	Marks
	emergency services)" Follow through their r_s and their cv (provided it is $ cv < 1$ Condone use of "association" in conclusion for A1 Condone 'positive' in conclusion.	

Question Number		S	cheme			Mark	S
3.							
	Defect Type	D ₁	D ₂				
	Shift	D_1	D2				
	First Shift	47.25	15.75	63			
	Second Shift	56.25	18.75	75			
	Third Shift	46.5	15.5	62			
		150	50	200		M1A1	
		150	50	200		WITAT	
			0.01.0	• • •			
	H_0 : Type of defect is in	ndependent o	f Shift (no asso	ciation)			
	H_1 : Type of defect is no	ot independe	nt of Shift (asso	ociation)		B1	
		or macpenae	ine of Shirt (usse				
	0	E	$(O - E)^2$	O_i^2			
			$\frac{(O-E)^2}{E}$	$\frac{O_i^2}{E_i}$			
				$\boldsymbol{\omega}_l$			
	15	17 25	0.1071				
	45	47.25	0.1071	42.857			
	18	15.75	0.3214	42.857 20.571			
	18 55	15.75 56.25	0.3214 0.02777	42.857 20.571 53.777			
	18 55 20	15.75 56.25 18.75	0.3214 0.02777 0.0833	42.857 20.571 53.777 21.333			
	18 55	15.75 56.25	0.3214 0.02777	42.857 20.571 53.777			
	18 55 20	15.75 56.25 18.75	0.3214 0.02777 0.0833	42.857 20.571 53.777 21.333		M1A1	
	18 55 20 50 12	15.75 56.25 18.75 46.5 15.5	0.3214 0.02777 0.0833 0.2634 0.7903	42.857 20.571 53.777 21.333 53.763 9.290		M1A1	
	18 55 20 50 12	15.75 56.25 18.75 46.5 15.5	0.3214 0.02777 0.0833 0.2634 0.7903	42.857 20.571 53.777 21.333 53.763 9.290			
	18 55 20 50 12	15.75 56.25 18.75 46.5 15.5	0.3214 0.02777 0.0833 0.2634 0.7903	42.857 20.571 53.777 21.333 53.763 9.290	awrt1.59	M1A1 A1	
	18 55 20 50	15.75 56.25 18.75 46.5 15.5	0.3214 0.02777 0.0833 0.2634 0.7903	42.857 20.571 53.777 21.333 53.763 9.290	awrt1.59		
	$\frac{18}{55}$ 20 50 12 $\frac{(O-E)^2}{E} = 1.5934 \text{ or } \frac{C}{E}$	15.75 56.25 18.75 46.5 15.5	0.3214 0.02777 0.0833 0.2634 0.7903	42.857 20.571 53.777 21.333 53.763 9.290	awrt1.59	A1	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	15.75 56.25 18.75 46.5 15.5	0.3214 0.02777 0.0833 0.2634 0.7903	42.857 20.571 53.777 21.333 53.763 9.290	awrt1.59	A1 B1	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{r} 15.75 \\ 56.25 \\ 18.75 \\ 46.5 \\ 15.5 \\ \hline 2_{i}^{2} \\ -200=201. \\ \overline{E_{i}} $	0.3214 0.02777 0.0833 0.2634 0.7903	42.857 20.571 53.777 21.333 53.763 9.290	awrt1.59	A1 B1 B1ft	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{r} 15.75 \\ 56.25 \\ 18.75 \\ 46.5 \\ 15.5 \\ \hline 2_{i}^{2} \\ -200=201. \\ \overline{E_{i}} $	0.3214 0.02777 0.0833 0.2634 0.7903	42.857 20.571 53.777 21.333 53.763 9.290	awrt1.59	A1 B1	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{15.75}{56.25}$ $\frac{18.75}{46.5}$ $\frac{46.5}{15.5}$ $\frac{2}{E_i}^2 -200 = 201.$ ent evidence f	0.3214 0.02777 0.0833 0.2634 0.7903 5934-200=1.593	42.857 20.571 53.777 21.333 53.763 9.290 4	awrt1.59	A1 B1 B1ft	

Question Number	Scheme	Marks
Notes	1^{st} M1 for some use of $\frac{\text{Row Total} \times \text{Col.Total}}{\text{Grand Total}}$ May be implied by correct	
	E_i	
	1 st A1 for all expected frequencies correct	
	B1 for both hypotheses. Must mention "defect" and "shift" at least once	
	Use of "relationship" or "correlation" or "connection" is B0	
	2^{nd} M1 for at least two correct terms (as in 3^{rd} or 4^{th} column) or correct	
	expressions with their E_i	
	2 nd A1 for all correct terms. May be implied by a correct answer.(2 dp or	
	better-allow eg 0.10)	
	3 rd M1 for a correct statement linking their test statistic and their cv.	
	Must be χ^2 not normal.	
	4 th A1 for a correct comment in context - must mention "manager's	
	belief" or "shift" and "defect type" - condone "relationship" or "connection"	
	here but not "correlation". No follow through e.g. "There is evidence of a	
	relationship between shift and type of defect"	

Question Number	Scheme	Marks
4. (a)	$\overline{x} = \frac{5320}{80} = 66.5$ $s^{2} = \frac{392000 - 80 \times (66.5)^{2}}{79}$ $= 483.797$ awrt 484	M1,A1 M1A1ft A1 (5)
(b)	H ₀ : $\mu_m = \mu_{nm}$, H ₁ : $\mu_m > \mu_{nm}$ (accept μ_1, μ_2 with definition)	B1B1
	$z = \frac{69.0 - 66.5}{\sqrt{\frac{483.797}{80} + \frac{446.44}{60}}}$	M1dM1
	= 0.6807 awrt 0.681	A1
	One tailed cv 1.6449 (Probability is awrt	B1
	0.752) 0.6807<1.6449 (or 0.248>0.05) insufficient evidence to reject H_0	dM1
	Mean money spent is not greater with music playing.	A1ft
		(8) 13

Question	Scheme	Marks
Number		
	Notes	
(b)	No definition award B1B0.	
	1 st M1 for attempt at s.e condone one number wrong or switched 60 &	
	80.	
	$2^{nd} dM1$ for using their s.e. in correct formula for test statistic.	
	3 rd dM1 dep. on 2nd M1 for a correct statement based on their normal cv and their test statistic	
	$2^{nd} A1$ for correct comment in context. Must mention "money spent" and	
	"music playing". Allow ft.	
	music playing . Anow h.	
	Critical Region for (b)	
	Standard error x z value for 2^{nd} M1	
	Standard error x 1.6449= awrt 6.04 for $1^{st} A1$	
	2.5<6.04	

Question Number		Scheme							Marks
5. (a)		Hurricanes: occur singly / are independent or occur at random /are a rare event / at a constant rate							B1B1 (2)
(b)	From data	From data $\frac{1 \times 2 + 2 \times 5 + 3 \times 17 + + 7 \times 12}{80} = 4.4875$						M1A1 (2)	
									(2)
	No of hurricanes, h	0 1	2	3	4	5	6	7+	
(c)	$80P\left(X=h\right) = 0.$.9 4038	r=9.06	13.55	s=15.205	13.647	10.2 06	13.388	M1A1A1
	Combine to give expected frequencies >5	13.999)]	13.55	15.205	13.647	10.2 06	13.388	(3)
	Observed	7		17	20	12	12	12	-
(d)	$\frac{\left(O-E\right)^2}{E}$	3.499.		0.876	1.511	0.198	0.31 5	0.143	M1
	$\frac{O_i^2}{E_i}$	3.500		21.322	26.306	10.551	14.1 08	10.755	
	H ₀ : Poisson H _{1:} Poisson	n distributio	on is not a	a good fit	o.e.		1	I	B1
	$\sum \frac{(O_i - E_i)^2}{E_i} = 6.545 \text{ or } \frac{O_i^2}{E_i} = 86.545 - 80 = 6.545 (awrt 6.55 \text{ or})$								A1
	6.54) v = 6 - 2 = 4 cv is 9.488 $\chi_{v}^{2}(0.05)$) (ft their v i.e.							v i.e.	B1 B1ft
	6.545<9.48 (Hurricane	38 so insuf			-	ution			A1 (6) 13

Question	Scheme	Marks
Number		
	Notes	
(b)	M for at least 2 terms on numerator. 359/80 only award M0A0	
(c)	M for 80xPoisson probability with 4.4875 and either 2 or 4.	
	1st A1 for awrt 9.06 and 2^{nd} A1 for awrt 15.20 or 15.21	
(d)	1 st M1 for some pooling and attempting $\frac{(O-E)^2}{E}$ or $\frac{O^2}{E}$, at least 3 correct	
	expressions or values.	
	1 st B1 no value for parameter permitted	
	2 nd A1 for a correct comment suggesting that Poisson model is suitable. No ft	

advancing learning, changing lives

Question Number	Scheme	Marks
6. (a)	$L = A_1 + A_2 + + A_6$ Mean is $E(L) = 6 \times 20 = 120$ Standard deviation is $\sqrt{Var(W)} = \sqrt{6 \times 5^2} = 5\sqrt{6} = 12.247$ awrt 12.2	B1 B1 (2)
(b)	$P(L > 110) = P(Z > \left(\frac{110 - 120}{12.247}\right))$ = $P(Z < 0.8164)$ = 0.7939 (or 0.7929 using interpolation or 0.79289 by calc)	M1 A1 (2)
(c)	Let $X = 4B - \sum_{1}^{6} A_i$ E(X) = 140 - 120 = 20 $Var(X) = 16 \times 8^2 + 6 \times 5^2 = 1174$ $P(X < 0) = P\left(Z < \frac{-20}{\sqrt{1174}}\right) = P(Z < -0.583)$ = 0.2797 (or 0.2810 if no interpolation) or 0.27971 by calc.	B1 M1M1A1 M1 A1 (6) 10

Question	Scheme	Marks
Number		Marito
	Notes	
(b)	M1 for identifying a correct probability (they must have the 110) and attempting to standardise with their mean and sd. This can be implied by the correct answer.A1 for awrt 0.794 or 0.793	
(c)	Accept ±20 for B mark. Only award for probability statement if 2 terms in var 1 st M1 for 1024, 2 nd M1 for 150 3 rd M for standardising with their mean and 2 term sd and finding probability <0.5 2 nd A1 for awrt 0.280 or 0.281	

Question Number	Scheme	Marks	S
7. (a)	H ₀ : μ =250, H ₁ : μ <250, $z = \frac{248 - 250}{\frac{5.4}{\sqrt{90}}}$ = -3.513 awrt -	B1 M1 A1	
	 3.51 Critical value -1.6449 -3.513<-1.6449 so sufficient evidence to reject H₀ Manager's claim is justified. 	B1	
	Manager s claim is justified.	AI	(5)
(b)	98% CI for μ is $248 \pm 2.3263 \times \frac{5.4}{\sqrt{90}}$ = awrt (247,249) dependent upon z value awrt 2.33	M1B1 A1A1	(4)
(c)	Hypothesis test is significant or CI does not contain stated weight. (Manager should ask the company to investigate if their) stated weight is too high o.e.	B1 B1	(4)
(d)	$P(\overline{x} - \mu < 1) = 0.98$ $\frac{1}{\frac{3}{\sqrt{n}}} = 2.3263$ $n = (3 \times 2.3263)^2 = 48.7$	M1 A1 dM1A1	
	Sample size 49 required.	A1	(5) 16

Question Number	Scheme	Marks
	Notes	
(a)	1 st B1 for H ₀ and for H ₁ (must be <250) They must use μ not <i>x</i> , <i>p</i> , λ or	
	\overline{x} etc	
	1^{st} M1 for attempt at standardising using 248, 250 and sd. Can accept <u>+</u> .	
	Critical region: 250-0.936=249.064 for M1A1 (and compare with 248.)	
	3^{rd} B1 for ± 1.6449 seen (or probability of 0.0002 or better)	
	2 nd A1 for a correct contextualised comment. Must mention "Manager"	
	and "claim" or "weight" and "stated weight". No follow through.	
(b)	2.3263 or better for B mark. Any <i>z</i> value replacing 2.3263 award M.	
(d)	1^{st} M for LHS = z value >1	
	1 st A for RHS awrt 2.33	
	2 nd A1 for answers in the range 48.7-48.9	
	3^{rd} A1 don't condone \geq	

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email publication.orders@edexcel.com Order Code UA028846 June 2011

For more information on Edexcel qualifications, please visit www.edexcel.com/guals

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

