edexcel

Mark Scheme (Results)

Summer 2013

GCE Statistics 3 (6691/01R)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2013
Publications Code UA037014
All the material in this publication is copyright
© Pearson Education Ltd 2013

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- \square The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.
8. In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme.

Question Number	Scheme	Marks
1.	Label females $1-100$ (or $0-99$) and males $1-300$ (or $0-299$) Using random numbers for each group in range $1-100(0-99)$ select 15 females and using $1-300$ (or $0-299)$ select $\underline{45}$ males	B1 B1 B1 [Total 3]
	Notes	
	$1^{\text {st }} \mathrm{B} 1$ for labelling\numbering\listing females and males $2^{\text {nd }} \mathrm{B} 1$ for use of random numbers or "randomly select" in each group (may be implied) $3^{\text {rd }} \mathrm{B} 1$ for selecting the correct number of females and males e.g. randomly select 45 males and 15 females scores $2^{\text {nd }}$ and $3^{\text {rd }} \mathrm{B}$ marks since randomly selecting and the "each group" is implied, If using systematic sampling within each strata allow $1^{\text {st }} \mathrm{B} 1$ and $3^{\text {rd }} \mathrm{B} 1$ (if earned) but $2^{\text {nd }} \mathrm{B} 0$	

Question Number	Scheme ${ }^{\text {a }}$ Marks
2.	$\begin{aligned} & X \sim \mathrm{~N}\left(40,3^{2}\right) \quad \bar{X} \sim \mathrm{~N}\left(40, \frac{9}{n}\right) \\ & \mathrm{P}(\bar{X}>42)=\mathrm{P}\left(Z>\frac{42-40}{\sqrt{\frac{9}{n}}}\right) \\ & \frac{42-40}{\sqrt{\frac{9}{n}}} \geq 1.6449 \\ & n \geq 6.087 \\ & n=7 \end{aligned}$
	$1^{\text {st }} \mathrm{B} 1$ for stating the correct distribution for \bar{X}. May be implied if correctly used in line 2 and no incorrect version seen elsewhere. $1^{\text {st }}$ M1 for an attempt to standardise with 42,40 and their $\sqrt{\frac{9}{n}}$, must have n. Allow \pm $2^{\text {nd }} \mathrm{B} 1$ for using $z= \pm 1.6449$ (or better) $2^{\text {nd }}$ dM1 Dep on $1^{\text {st }}$ M1 for forming an equation in n or \sqrt{n}. Allow "=" or " $<$ " i.e. setting their standardised expression $=$ their z value $(\|z\|>1.5)$ A1 for $n=7$ only The A1 must follow from correct working so e.g. $n<6.087$ leading to $n=7$ is A0

Question Number	Scheme					Marks
$\begin{array}{ll}4 & \text { (a) } \\ & \text { (b) } \\ & \text { (c) } \\ & \text { (d) }\end{array}$	$\frac{282 \times 100}{600}$		(Do not accept 282-114.2-90.2-30.6 (o.e.))			B1 (1)
	9					
	2.5 or better				(Do not accept 0.025)	B1
	H_{0} : hair colour occurs in the ratio 2:6:1:3 H_{1} : hair colour does not occur in the ratio 2:6:1:3					B1
		black	brown	red	blonde	
	observed	105	282	48	165	B1expected M1
	expected	100	300	50	150	
	$\frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}$	0.25	1.08	0.08	1.5	M1
	$\frac{O_{i}{ }^{2}}{E_{i}}$	110.25	265.08	46.08	181.5	
	$\sum_{\sum_{i} \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}=2.91 \quad \text { or } \quad \sum \frac{O_{I}^{2}}{E_{I}}-600=602.91-600=2.91 \quad \text { (awrt 2.91) }}^{v=3}$ cv is 7.815 [2.91<7.815] so insufficient evidence to reject H_{0} or not significant There is evidence to suggest that hair colour does occur in the given ratio.					A1 B1 B1 dM1 A1 [Total 12]
	Notes					
(d)	$1^{\text {st }} \mathrm{B} 1$ for both hypotheses. Must mention hair colour and ratio e.g. "hair colour in the given ratio" Allow use of ditto $2^{\text {nd }} \mathrm{B} 1$ for all 4 correct expected frequencies $1^{\text {st }}$ M1 for at least 2 correct calculations from $3^{\text {rd }}$ or $4^{\text {th }}$ row $1^{\text {st }}$ A1 for all correct calculations to at least 3 sf if row 4 If awrt 2.91 is seen with no incorrect working award B1M1A1A1 $2^{\text {nd }}$ dM1 Dep on $1^{\text {st }}$ M1 for a correct statement linking their test statistic and their cv ($\mathrm{cv}>3.5$) $3^{\text {rd }}$ A1 for a correct comment in context - must mention "hair colour" and "ratios" or "model" e.g. "There is evidence of to support the given model" No follow through If hypotheses are the wrong way round score A0.					

Question Number	Scheme ${ }_{\text {a }}$ Marks
7 (a)	
	Notes
(a)	$1^{\text {st }} \mathrm{B} 1$ for both hypotheses in terms of μ not words. Accept μ_{1}, μ_{2} etc if there is some indication of which is which e.g $X \sim \mathrm{~N}\left(67,25^{2}\right)$ implies X is "before". $1^{\text {st }}$ M1 for attempt at s.e. - condone one number wrong or mis-matched variances i.e. $\sqrt{\frac{p}{q}+\frac{r}{s}}\left(3\right.$ of $p, q, r \& s$ correct) or $\sqrt{\frac{10^{2}}{100}+\frac{22^{2}}{150}}$ $2^{\text {nd }} \mathrm{dM} 1$ Dep on $1^{\text {st }} \mathrm{M} 1$ for using their s.e. in correct formula for test statistic. Num of $\pm(67-60)$ or for correct expression for CR $3^{\text {rd }}$ dM1 dep. on $2^{\text {nd }}$ M1 for a correct statement based on their normal $\mathrm{cv}(\|\mathrm{cv}\|>1.5)$ and their test statistic $2^{\text {nd }}$ A1ft for correct comment in context. Must mention "lead" or "soil" and "factory". Allow ft If hypotheses are the wrong way round score A0 If hypotheses are not for a difference between 2 means award A0 B1 must mention mean and normal. In words or symbols e.g. $\bar{X} \sim \mathrm{~N}(\ldots$

Question Number	Scheme	Marks
8 (a)	$\begin{aligned} & \text { Let } W=D_{1}-D_{2} \\ & W \sim \mathrm{~N}(0,2.88) \\ & \mathrm{P}(\|W\|>3) \\ & =2 \times \mathrm{P}(W>3) \\ & \quad=2 \times \mathrm{P}\left(Z>\frac{3-0}{\sqrt{2.88}}\right) \\ & \\ & =2 \times \mathrm{P}(\mathrm{Z}>1.76776 \ldots . .) \\ & \\ & =2 \times(1-0.9616) \\ & \\ & =0.0768 \end{aligned}$	M1 A1, A1 M1 dM1 A1
	Let $T=5 C-4 D$ or $4 D-5 C$ or $C-\frac{4}{5} D$ or $\frac{4}{5} D-C$ $\begin{aligned} & T \sim \mathrm{~N}(\pm 4,39.04) \text { or } \mathrm{N}(\pm 0.8,1.5616) \\ & \mathrm{P}(T<0) \end{aligned}=\mathrm{P}\left(Z<\frac{0-4}{\sqrt{39.04}}\right) \text { or } \mathrm{P}\left(Z<\frac{0-0.8}{\sqrt{1.5616}}\right)$	M1 A1 A1 M1 A1
	Let $P=D+D+D+D+D+D+B$ Let $Q=C+C+C+C+C+C+B$ $P \sim \mathrm{~N}(352,13.64)$ and $Q \sim \mathrm{~N}(292,8.84)$ [Let $R=P-Q$] $R \sim \mathrm{~N}(\pm 60,22.48)$	M1 A1, A1 M1
	$\begin{aligned} \mathrm{P}(R>50) & =\mathrm{P}\left(Z>\frac{50-60}{\sqrt{22.48}}\right) \\ & =\mathrm{P}(Z>-2.10 \ldots) \\ & =0.9821 \end{aligned}$ awrt 0.982 ~ 0.983	dM1 A1
		$\begin{array}{r} (6) \\ \text { [Total 17] } \\ \hline \end{array}$
	Notes	
(a)	Award full marks in each part for a correct answer with no incorrect working seen. $1^{\text {st }} \mathrm{M} 1$ for explicitly defining a suitable W and attempt to find the distribution of W. May be implied by sight of $\mathrm{N}(0,2.88)$ $1^{\text {st }}$ A1 for normal and mean of $0,2^{\text {nd }}$ A1 for variance of 2.88 . Award M1A1A1 for $N(0,2.88)$ seen. $2^{\text {nd }} \mathrm{M} 1$ for realising need $2 \times \mathrm{P}(W>3)$ $3^{\text {rd }}$ dM1 Dep on $1^{\text {st }}$ M1 for standardising with 3 , 0 and their s.d. Must lead to $\mathrm{P}(Z>+$ ve) (o.e.) $1^{\text {st }} \mathrm{M} 1$ for explicitly defining a suitable T but may be implied by sight of one of these normals $1^{\text {st }}$ A1 for normal and correct mean, $2^{\text {nd }}$ A1 for correct variance. Accept awrt 3sf i.e. 39.0, 1.56 $2^{\text {nd }}$ M1 for standardising with 0 and their mean and their s.d. Must lead to $\mathrm{P}(Z<-v e)$ (o.e.) $1^{\text {st }}$ M1 for explicitly defining a correct P or Q. May be implied by a correct distribution for P or Q $1^{\text {st }} \mathrm{A} 1 \quad$ for a correct distribution for $P \quad 2^{\text {nd }} \mathrm{A} 1$ for a correct distribution for Q $2^{\text {nd }}$ M1 for attempting R and obtaining its distribution- ft their P and Q means and variances $3^{\text {rd }} \mathrm{dM} 1$ for attempting $\mathrm{P}(R>50)$ and standardising with 50 and their $\mathrm{E}(R)$ and their $\sqrt{\operatorname{Var}(R)}$ Dependent on $2^{\text {nd }} \mathrm{M} 1$. Must lead to a $\mathrm{P}(Z>-$-ve) (o.e.)	
(b)		
(c)		

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UA037014 Summer 2013

Llywodraeth Cynulliad Cymru Welsh Assembly Government
For more information on Edexcel qualifications, please visit our website www.edexcel.com

Rewarding Learning

