GCE

Mathematics

Unit 4730: Mechanics 3
Advanced GCE

Mark Scheme for June 2015

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

		Answer	Marks	Guidance	
1	(i)	impulse momentum diagram $\tan \alpha=\mathrm{I} /(0.2 \times 3)$ $I=0.25$ shown OR $0.2 \times 3=0.2 v \cos \alpha$ and $I=0.2 v \sin \alpha$ $\frac{I}{0.2 \times 3}=\tan \alpha$ $I=0.25$	M1 A1 M1 A1 [4] M1 A1 M1 A1	right-angled triangle with angle α and sides labelled $3, v$ and $I / 0.2$ or $0.6,0.2 v$ and I AG resolve parallel or perp to dir of motion both attempt to manipulate AG	correct orientation, α and one side labelled correctly, right angle implied first two marks may be implied by correct working
	(ii)	$\begin{aligned} & \cos \alpha=3 / \mathrm{v} \\ & (\text { speed })=3.25 \mathrm{~m} \mathrm{~s}^{-1} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 [2] } \end{aligned}$	or using Pythagoras, with 3 and 1.25 oe	
2	m	$\begin{aligned} & \text { Moments about } B \text { for } B C \\ & 75 L \cos \beta=50 \times 2 L \sin \beta \\ & \tan \beta=3 / 4 \end{aligned}$	M1 A1 A1 [3]	2 terms involving $\sin \beta$ and $\cos \beta, 75$ and 50 WWW AG	allow sin/cos error/ sign error allow missing L
	(ii)	moments about A for both rods $\begin{aligned} & W L \cos \alpha+75(2 L \cos \alpha+L \cos \beta)= \\ & 50(2 L \sin \alpha+2 L \sin \beta) \end{aligned}$ correct values for $\sin / \cos \alpha / \beta$ attempt to solve $(W=) 90(\mathrm{~N})$ OR ' X ' $=50 \mathrm{~N}$ to right on $A B$ oe $' Y$ ' $=75 \mathrm{~N}$ down on $A B$ oe Moments about A for $A B$ $\begin{aligned} & W L \cos \alpha+75 \times 2 L \cos \alpha=50 \times 2 L \sin \alpha \\ & (W=) 90(\mathrm{~N}) \end{aligned}$	$\begin{aligned} & \text { M1* } \\ & \text { A1 } \\ & \text { B1 } \\ & \text { *M1 } \\ & \text { A1 [5] } \\ & \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \hline \end{aligned}$	all (5) terms present; each term involves $\sin / \cos \alpha / \beta$. Dim correct: no extra terms dep M1A1 dep B1 also sc B1 for magnitudes if directions wrong/missing involves $W, 75,50, \sin \alpha$ and $\cos \alpha$. dimensionally correct; no extra terms with substitution for α	allow $\sin / \cos , L / 2 L$, sign errors L may be cancelled all 4 seen all values substituted $50 \& 75$ may be seen on diagram in (i) L may be cancelled

Answer			MarksM1A1A1M1A1A1 [6]	Guidance	
3	(i)	$\begin{aligned} & \text { use of } T=\frac{\lambda x}{l} \\ & T=\frac{10 \times 0.2}{0.4}+\frac{12 \times 0.1}{0.5} \\ & W=7.4 \mathrm{~N} \\ & \text { use of } E=\frac{\lambda x^{2}}{2 l} \\ & E=\frac{10(0.2)^{2}}{2 \times 0.4}+\frac{12(0.1)^{2}}{2 \times 0.5} \\ & E=0.62(\mathrm{~J}) \end{aligned}$		used at least once CAO AG used at least once	may see $0.5+0.12$
	(ii)	use of $F=m a$ when further extension is x $\begin{aligned} & 7.4-\frac{10 \times(x+0.2)}{0.4}-\frac{12 \times(x+0.1)}{0.5}=\frac{7.4}{g} a \\ & a=-\frac{49 g}{7.4} x \end{aligned}$ SHM: $\omega^{2}=\frac{49 g}{7.4} \quad\left(\right.$ or $\frac{2401}{37}$ or 64.89189$)$ Use of $T=\frac{2 \pi}{\omega}$ period is 0.780 (secs) $\frac{2 \pi \sqrt{37}}{49}$ all subsequent motion is SHM because string does not become slack	M1* A1 A1 A1 *M1 A1 B1 [7]	allow sign errors, ' m ' wrong ' F ' correct accept $a=-64.89 \ldots x, \quad a=-\frac{2401}{37} x$ oe dep on all first 3 marks must subst for their ω allow if ω correct justified at some point	OR, when total length of string is x $\begin{aligned} & 7.4-\frac{10 \times(x-0.4)}{0.4}-\frac{12 \times(x-0.5)}{0.5}=\frac{7.4}{9} a \\ & a=-\frac{49 g}{7.4}(x-0.6) \end{aligned}$ SHM about $x=0.6$, and ω^{2} given 0.77998
4	(i)	$\begin{aligned} & -\frac{v}{8}=0.4 \frac{d v}{d t} \\ & t=-3.2 \int \frac{1}{v} d v \\ & t=-3.2 \ln v+3.2 \ln 10 \\ & \text { time taken }=3.2 \ln 2 \text { or } 2.22(\mathrm{~s}) \end{aligned}$	$\begin{aligned} & \text { M1* } \\ & \text { A1 } \\ & \text { *M1 } \\ & \text { A1 } \\ & \text { A1 [5] } \end{aligned}$	allow sign error, allow $0.4 a$ attempt to separate variables and integrate	or $t=-3.2 \int_{10_{v}^{5}}^{\frac{1}{v}} d v$ $t=-3.2 \ln v ;$ limits used correctly 2.21807...

Answer			Marks M1* A1 *M1	Guidance	
	(ii)	$\begin{aligned} & -\frac{v}{8}=0.4 v \frac{d v}{d x} \\ & x=-3.2 \int d v \\ & x=-3.2 \mathrm{v}+32 \\ & \text { ave speed }=x /(\mathrm{i}) \\ & \text { ave speed }=7.21 \end{aligned}$ OR $\begin{aligned} & \frac{\mathrm{d} x}{\mathrm{~d} t}=10 e^{-\frac{t}{3.2}} \\ & x=10 \int e^{-\frac{t}{3.2} \mathrm{~d} t} \\ & x=32\left(1-e^{-\frac{t}{3.2}}\right) \end{aligned}$ ave speed $=x /(\mathrm{i})$ ave speed $=7.21$	M1* A1 *M1 A1 *M1 A1 [6] M1* A1 *M1 A1 *M1 A1	allow sign error attempt to separate variables and integrate $x=16 \text { when } v=5 .$ for M1, ft from (i), must contain \ln term attempt to separate variables and integrate must show constant or use limits correctly dep all 5 previous marks	their x evaluated accept $5 / \ln 2$ $x=16$ when $t=3.2 \ln (2)$ accept $5 / \ln 2$
5	(i)	use of conservation of momentum $2 m a \cos \alpha-m b \cos \beta=m \times 2 \times \cos 45^{\circ}$ use of NEL $2 \cos 45^{\circ}-0=-2 / 3(-b \cos \beta-a \cos \alpha)$ attempt to eliminate $a \cos \alpha$ or $b \cos \beta$ $a \cos \alpha=5 \sqrt{2} / 6$ $b \cos \beta=2 \sqrt{ } 2 / 3 \mathrm{oe}$	$\begin{aligned} & \text { M1* } \\ & \text { A1 } \\ & \text { M1* } \\ & \text { A1 } \\ & \text { *M1 } \\ & \text { A1 } \\ & \text { A1 [7] } \end{aligned}$	must be 3 non-zero terms must be 3 non-zero terms, and ' e ' in correct postion dep both previous M1 marks AG dep final M1 and www	allow sign errors, $m / 2 m$ errors, \sin / \cos allow sign errors, \sin / \cos,
	(ii)	$\begin{aligned} & a \sin \alpha=2 \\ & \text { attempt to solve } a \sin \alpha=2 \text { and } a \cos \alpha=5 \sqrt{ } 2 / 6 \\ & a=2.32 \\ & \alpha=59.5^{\circ} \end{aligned}$	B1 M1 A1 A1 [4]	need to eliminate a or α accept 1.03 radians	$\begin{aligned} & 2.321398 \ldots, \\ & 59.49104 \ldots, \text { 1.0383...rad } \end{aligned}$

Answer			Marks	Guidance	
6	(i)	$\begin{aligned} & a=0.6(\mathrm{~m}) \\ & \omega=4 \\ & \max \mathrm{vel}=a \omega=2.4\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	B1 B1 B1ft[3]	accept sight of $\frac{\pi}{0.25 \pi}$ or $\frac{2 \pi}{0.5 \pi}$ ft from wrong a and/or ω	
	(ii)	must use their a and ω from (i) unless defined differently in (ii) $\begin{aligned} & x=0.6 \cos 4 \times 0.7 \\ & x=-0.565 \\ & v=-0.6 \times 4 \times \sin 4 \times 0.7 \\ & v=-0.804 \end{aligned}$	M1 A1 M1 A1 [4]	use of $a \cos \omega t$; complete method use of $(-) a \omega \sin \omega t$ or $v^{2}=\omega^{2}\left(a^{2}-x^{2}\right)$ if v^{2} formula used, direction of v needs to be made clear.	or $a \sin (\omega t+\varepsilon)$, with $\varepsilon= \pm \pi / 2$ -0.565333... or $(-) a \omega \cos (\omega t+\varepsilon)$, with $\varepsilon= \pm \pi / 2$; allow M1ft from wrong formula for x -0.80397.
	(iii)	do not accept answers from wrong working t and x for one point t and x for second point correctly giving precisely 2 other occasions, with x and t values matching sc, if <3 scored, both t values B2 or one t value B1 or $x=0.565 \mathrm{~B} 1$ of B0 scored allow B1 for number of other occasions shown to be 2	B2 B1 B1	values of t are $=0.0854,0.871$ values of x are $0.565,-0.565$ dep first 3 marks ignore wrong values "،	$\pi / 4-07, \pi / 2-0.7$ ignore ref to point when $t=0.7$ can show on diagram P has this speed 4 times in 1 period (1.570 s) so 2 other times in $0<t<1$

Answer			MarksM1A1M1A1A1 [5]	Guidance	
7	(i)	using $F=m \mathrm{a}$ $T-0.2 \mathrm{~g} \cos \theta=0.2 v^{2} / 0.5$ by energy $\begin{aligned} & 1 / 2 \times 0.2 u^{2}=1 / 2 \times 0.2 v^{2}+0.2 g \times 0.5(1-\cos \theta) \\ & \mathrm{T}=5.88 \cos \theta+0.4 u^{2}-3.92 \end{aligned}$		must have the right 3 terms; allow sign error / sin for cos for M1 AG with no errors and no gaps in argument	$v^{2}=u^{2}-9.8(1-\cos \theta)$
	(ii)	when $\theta=180^{\circ}, 5.88 \cos \theta+0.4 u^{2}-3.92=0$ $-5.88+0.4 u^{2}-3.92=0$ $\min u$ is $4.95\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ OR, at top, $m g=\frac{m v^{2}}{r}$, so $v^{2}=0.5 \mathrm{~g}$ by energy $\frac{1}{2} 0.2 u^{2}=\frac{1}{2} 0.2 \times 0.5 g+0.2 g$ $\min u$ is $4.95\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$	M1 A1 A1 [3] B1 M1 A1	allow inequalities for M1A1 $\frac{7}{2} \sqrt{2}$ allow inequalities for B1M1	4.9497... Not > 4.95
	(iii)	$\begin{aligned} & 5.88 \cos \theta+0.4 \times 12.25-3.92=0 \\ & \cos \theta=(3.92-4.9) / 5.88(=-1 / 6) \end{aligned}$ use energy eq ${ }^{\text {n }}$ from (i) $\begin{aligned} & 1 / 2 \times 0.2 \times 3.5^{2}=1 / 2 \times 0.2 v^{2}+0.2 g \times 0.5(1-\cos \theta) \\ & v=0.904 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$ OR use T equation from (i) $\begin{aligned} & 0-0.2 \mathrm{~g}(-1 / 6)=0.2 v^{2} / 0.5 \\ & v=0.904 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	M1 A1 M1 A1 [4] M1 A1	might see $\theta=99.6^{\circ}$ or 1.74 radians accept use of their θ $\frac{7}{30} \sqrt{15}$	99.49406...ㅇ, 1.73824...rads $0.903696 \ldots$

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
GROUP
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

