GCE

Mathematics

Unit 4730: Mechanics 3
Advanced GCE

Mark Scheme for June 2017

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

Answer			MarksB1M1A1M1A1 [5]	Guidance	
1	(i)	Impulse/momentum triangle with sides 0.8 , 1.2 and 1 $\begin{equation*} \cos \theta=\frac{0.8^{2}+1^{2}-1.2^{2}}{2 \times 0.8 \times 1} \tag{A1} \end{equation*}$ 82.8° or 1.44 rads $1.2 \sin \alpha=\sin \theta$ Angle 124°		OR $1.2 \cos \alpha=\cos \theta-0.8$ $\begin{align*} & 1.2 \sin \alpha=\sin \theta \tag{M1}\\ & 1.44=(\cos \theta-0.8)^{2}+\sin ^{2} \theta \end{align*}$ isw cv θ; OR from cos rule No isw	Square and add 82.81924° or 1.445 rads may see 55.771° or 0.97339 rads 2.168 rads
2	(i)	$\begin{aligned} & \frac{1}{2} m \times 0.7^{2}=\frac{1}{2} m v^{2}+\frac{24 m g 0.3^{2}}{2 \times 1.2}-m g \times 1.5 \\ & \text { Speed }=3.5\left(\mathrm{~ms}^{-1}\right) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 [3] } \end{aligned}$	By energy; needs KE, PE and EE terms $\text { OR } \frac{1}{2} m \times 4.9^{2}=\frac{1}{2} m v^{2}+\frac{24 m g 0.3^{2}}{2 \times 1.2}-m g \times 0.3$ AG Adequate working, no errors	Allow wrong signs, missing ' 2 '
	(ii)	One correct EE term involving x seen $\begin{aligned} \frac{1}{2} m \times 0.7^{2}= & \frac{24 m g(x-1.2)^{2}}{2 \times 1.2} \\ & +\frac{32 m g(x-1.5)^{2}}{2 \times 0.8}-m g x \end{aligned}$ $\left[48 x^{2}-136 x+95=0\right]$ $1.25(\mathrm{~m})$ and $1.58(\mathrm{~m})$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 [5] } \end{aligned}$	Where x is distance below O OR , where x is dist from $\mathrm{T}, \frac{1}{2} m \times 0.7^{2}=$ $\frac{24 m g(x+0.3)^{2}}{2 \times 1.2}+\frac{32 m g x^{2}}{2 \times 0.8}-m g(x+1.5)$ Leads to $48 x^{2}+8 x-1=0$ Correct attempt to solve their 3 term quad. $1 \frac{1}{4} 1 \frac{7}{12}$	Energy equation with at least $1 \mathrm{KE}, 1$ PE and 1 EE term and values subst. Alt left side: $\frac{1}{2} m 3.5^{2}+\frac{24 m g 0.3^{2}}{2 \times 1.2}-1.5 m g$ Dep M1 above

3	(i)	$48\left(\mathrm{~ms}^{-1}\right)$	B1 [1]	Accept ≤ 48	
	(ii)	$\begin{aligned} & \text { Use } \frac{1}{2} \sqrt{12-\frac{1}{4} v}=0.2 a \\ & \frac{1}{2} \sqrt{12-\frac{1}{4} v}=0.2 \frac{\mathrm{~d} v}{\mathrm{~d} t} \\ & 2.5 t=\int \frac{\mathrm{d} v}{\sqrt{12-\frac{1}{4} v}}(+c) \\ & 2.5 t=-8\left(12-\frac{1}{4} v\right)^{\frac{1}{2}}(+c) \\ & {[c=24]} \\ & v=48-4\left(3-\frac{t}{3.2}\right)^{2} \end{aligned}$	M1* A1 *M1* A1 *M1 A1 [6]	Accept $v \frac{\mathrm{~d} v}{\mathrm{~d} x}$ for a Sep variables and integrate one side For attempt to find c, dep previous M1 oe $12+7.5 t-\frac{25}{64} t^{2} \quad(0.390625)$	Allow missing 0.2 or sign error $\begin{aligned} & 2.5 t=\int \frac{2 \mathrm{~d} v}{\sqrt{48-v}}(+c) \\ & 2.5 t=-4(48-v)^{\frac{1}{2}}(+c) \\ & v=48-0.390625(9.6-t)^{2} \end{aligned}$
	(iii)	$\begin{aligned} & x=\int\left(12+\frac{24}{3.2} t-\frac{4}{3.2^{2}} t^{2}\right) \mathrm{d} t \\ & x=12 t+3.75 t^{2}-0.1302 t^{3}(+c) \\ & (\mathrm{t}=0 \text { and }) \mathrm{t}=3.2 \\ & \text { Distance }=72.533(\mathrm{~m}) \end{aligned}$	M1 A1 M1 A1 [4]	$\begin{aligned} & \text { OR } x=\int\left(48-4\left(3-\frac{t}{3.2}\right)^{2}\right) \mathrm{d} t \\ & x=48 t+\frac{12.8}{3}\left(3-\frac{t}{3.2}\right)^{3}\left(+c^{\prime}\right) \end{aligned}$ ft their (ii)	$\begin{aligned} & \text { OR } \frac{1}{2} \sqrt{12-\frac{1}{4} v}=0.2 v \frac{\mathrm{~d} v}{\mathrm{~d} x} \\ & \text { via subst }\left(12-\frac{1}{4} v\right)=u^{2} \\ & x=12.8\left(12 u-\frac{u^{3}}{3}\right)+C \end{aligned}$

4	(i)	Momentum equation $\begin{aligned} & 2 m a=-2 m \frac{1}{10} \sqrt{5} \frac{1}{\sqrt{5}}+7 m \frac{1}{10} \sqrt{5} \frac{1}{\sqrt{5}} \\ & (a=) \frac{1}{4}\left(\mathrm{~ms}^{-1}\right) \end{aligned}$ Comp of speed of A perp $=0.2$ Speed of A was $\sqrt{ }\left(0.25^{2}+0.2^{2}\right)$ OR $\tan \theta=\frac{0.2}{0.25}$ Speed 0.320 or $\frac{\sqrt{ } 41}{20}$; Ang 38.7° or 0.675 rads NLM $0.1+0.1=-e(0-a))$ $(e=) 0.8$	M1 A1 B1 M1 A1 M1 A1 [7]	Along line of centres Allow errors with signs and masses soi soi Allow their vel comps oe For both angle and speed Along line of centres Allow errors with signs	Allow use of 63.4° for full marks Must use comp of vel $0.320156 ; 38.6598^{\circ} \text { or } 0.67474 \text { rads }$ May see $\frac{1}{10} \sqrt{5} \frac{1}{\sqrt{5}}$ for 0.1
	(ii)	A and B have same speed perpendicular to line of centres after first collision	B1 [1]	accept 'vertical'	
	(iii)	Momentum equation along line of centres $3 m U-2 m \frac{1}{10} \sqrt{5} \frac{1}{\sqrt{5}}=3 m c+2 m a^{\prime}$ NLM $a^{\prime}-c=-1\left(-\frac{1}{10} \sqrt{5} \frac{1}{\sqrt{5}}-U\right)$ Use $a^{\prime}=0.1$ Max $U=\frac{1}{15}$	M1 A1 M1 A1 B1 A1 [6]	Allow errors with signs and masses Allow $\cos \alpha$ for $\frac{1}{\sqrt{5}}$ Allow errors with signs Accept any inequality Accept 0.0667 accept \leq	Must use comp of vel Or conservation of energy $\frac{1}{2} 3 m U^{2}+\frac{1}{2} 2 m 0.1^{2}=\frac{1}{2} 3 m c^{2}+\frac{1}{2} 2 m a^{\prime 2}$ do not accept <
5	(i)	$\begin{aligned} & 3 m g a \cos \frac{\pi}{6} \text { and } 2 m g a \cos \frac{\pi}{6} \\ & 3 m g a \cos \left(\frac{\pi}{6}+\theta\right)+2 m g a \cos \left(\frac{\pi}{6}-\theta\right)+ \\ & \frac{1}{2} 3 m v^{2}+\frac{1}{2} 2 m v^{2} \\ & v^{2}=\frac{2}{5} a g\left(5 \cos \frac{\pi}{6}-3 \cos \left(\frac{\pi}{6}+\theta\right)\right. \\ & \left.-2 \cos \left(\frac{\pi}{6}-\theta\right)\right) \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 [4] } \end{aligned}$	Initial PE Final PE + KE AG Equating and correct manipulation	If O is zero level for PE For M1 at least 1 KE and 1 PE term; allow m used for $2 \mathrm{~m} / 3 \mathrm{~m}$; wrong signs; missing g

	(ii)	$\begin{aligned} & v^{2}=\frac{2}{5} a g\left(5 \cos \frac{\pi}{6}-3 \cos \frac{\pi}{3}-2 \cos 0\right) \\ & 3 m g \cos \frac{\pi}{3}-R=3 m \frac{v^{2}}{a} \end{aligned}$ $R=3 m g \cos \frac{\pi}{3}-3 m \frac{2 g}{5}\left(5 \cos \frac{\pi}{6}-\frac{7}{2}\right)$ $R=m g\left(5.7-6 \cos \frac{\pi}{6}\right)$ oe	B1 M1 A1 A1 [4]	$v^{2}=\frac{1}{5} \operatorname{ag}(5 \sqrt{3}-7)$ $F=m a$, condone sign error; allow m used for $2 \mathrm{~m} / 3 \mathrm{~m}$ Accept 0.5038475 mg or $m g(5.7-3 \sqrt{3})$ oe	$\begin{aligned} & \text { OR } 3 m g \cos \left(\frac{\pi}{6}+\theta\right)-R=3 m \frac{v^{2}}{a} \\ & R=3 m g \cos \left(\frac{\pi}{6}+\theta\right)- \\ & 3 m \frac{2}{5} g\left(5 \cos \frac{\pi}{6}-3 \cos \left(\frac{\pi}{6}+\theta\right)-\right. \\ & \left.2 \cos \left(\frac{\pi}{6}-\theta\right)\right) \\ & R=m g\left(6.6 \cos \left(\frac{\pi}{6}+\theta\right)+\right. \\ & \left.2.4 \cos \left(\frac{\pi}{6}-\theta\right)-6 \cos \frac{\pi}{6}\right) \end{aligned}$ Answer must be simplified $4.94 m$ loses last mark
6	(i)	$\begin{aligned} & P l \sqrt{5}=W \times 3 l \cos \theta \\ & P=1.2 W \\ & Q l \sqrt{2}=U \times \frac{\lambda}{2} l \cos \emptyset \\ & Q=0.25 \lambda U \end{aligned}$	M1 A1 M1 A1 [4]	Mom about A for $A B$ AG Mom about A for AC	Allow $\sin \theta$, cancelled l Not from use of angle 26.565° Allow $\sin \emptyset$, cancelled l
	(ii)	$\begin{aligned} & \text { (H) } P \sin \theta=Q \sin \emptyset \\ & \text { (V) } W+U=P \cos \theta+Q \cos \emptyset \\ & W+U=P \cos \theta+P \sin \theta \times \frac{\cos \emptyset}{\sin \varnothing} \\ & W+U=\frac{3}{\sqrt{5}} \times 1.2 W \\ & k=0.610 \\ & \lambda=4.98 \\ & {\left[P \sqrt{5} l-W 3 l \cos \theta=Q \sqrt{2} l-U \frac{\lambda}{2} \cos \emptyset\right.} \end{aligned}$	M1 M1 A1 M1* *M1 A1 A1 [7]	$P \frac{1}{\sqrt{5}}=Q \frac{1}{\sqrt{2}} ;$ compts essential $W+U=P \frac{2}{\sqrt{5}}+Q \frac{1}{\sqrt{2}} ;$ compts essential Eliminate Q (or P) dep M1M1 Elim P and Q to get equation in $k, W+U=$ 1.609689 W $\frac{18 \sqrt{5}-25}{25}$ Mom about A (or any other point) for whole system - allow M1 (A1) if resolving not seen twice]	Allow $\frac{2}{\sqrt{5}}$ for M1 Allow $\frac{1}{\sqrt{5}}$ for M1, sign errors $\begin{aligned} & W+U=Q \cos \theta \times \frac{\sin \emptyset}{\sin \theta}+Q \cos \emptyset \\ & {\left[W+U=0.25 \lambda U \times \frac{3}{2 \sqrt{2}}\right]} \\ & 0.6099689 \end{aligned}$ 4.97695 Allow use of angles in (ii): 26.6 \& 45 OR after M1M1A0/1, M1* for 2 equns in terms of k and $\lambda, * \mathrm{M} 1$ for solving for k or λ.

7	(i)	$\begin{aligned} & \frac{1}{2} m \times \frac{g}{90}=m g h \\ & {\left[\text { Max height }=\frac{1}{180}=0.005556\right]} \\ & \text { Max angle }=6.76^{\circ} \text { or } 0.118 \mathrm{rads} \\ & -m g \sin \theta=m \times 0.8 \times \ddot{\theta} \\ & \ddot{\theta}=-\frac{9.8}{0.8} \theta, \end{aligned}$ SHM (about $\theta=0$) since θ is small $\begin{aligned} & \omega^{2}=12.25 \\ & \text { Period }=1.80 \operatorname{secs}\left(\frac{4}{7} \pi\right) \end{aligned}$	M1 A1 M1 A1 A1 M1 A1 [7]	By energy; allow cancelled m Allow M1A1 for 6.76° or 0.118 rads in (ii) N2L; allow a for $0.8 \ddot{\theta}$; allow cancelled m Cand value	$\frac{1}{2} m \times \frac{g}{90}=m g \times 0.8(1-\cos \theta)$ 6.756 / 0.11798 allow sign error, sin / cos 1.7952
	(ii)	$\begin{aligned} & 0.087266=A \sin 3.5 t \\ & t=0.238 \text { secs } \\ & t^{\prime}=2\left(\frac{1.7952}{4}-0.2378\right)=0.422(\mathrm{~s}) \\ & \dot{\theta}=0.118 \times 3.5 \cos 3.5 \times 0.238 \\ & \text { Linear speed }=0.222\left(\mathrm{~ms}^{-1}\right) \end{aligned}$	M1 A1 A1 M1 A1 [5]	$\begin{aligned} & \text { OR } 5=A \sin 3.5 t ; A=\text { amplitude } \\ & \text { Or } 0.65972 \\ & \text { Or } 0.65972-0.2378 \\ & \text { OR } \dot{\theta}=\sqrt{ }\left(3.5^{2}\left(0.118^{2}-0.0873^{2}\right)\right. \\ & 0.8 \times 0.278 \end{aligned}$	May use \cos * 0.2378 allow \sin if consistent with ${ }^{*}$; allow 5° and 6.76° Or $\frac{1}{2} m \frac{9}{90}=\frac{1}{2} m v^{2}+m g 0.8(1-$ $\cos 5^{\circ}$)
	(iii)	Max height is still 0.00556 soi Max angle $=\cos ^{-1} \frac{(0.05-0.00556)}{0.05}$ [27.3] Not SHM since angle is not small	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 [3] } \\ & \hline \end{aligned}$	accept 'still the same'	or attempt to work out height 0.476 rads

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
GROUP
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

