

# Mark Scheme (Results)

# Summer 2017

Pearson Edexcel GCE In Further Pure Mathematics FP2 (6668/01)



## **Edexcel and BTEC Qualifications**

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

#### Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <a href="https://www.pearson.com/uk">www.pearson.com/uk</a>

Summer 2017 Publications Code 6668\_01\_1706\_MS All the material in this publication is copyright © Pearson Education Ltd 2017

### **General Marking Guidance**

• All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

• Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.

• Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.

• There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.

• All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

• Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.

• When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.

• Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

# **EDEXCEL GCE MATHEMATICS**

## **General Instructions for Marking**

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for `knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol  $\sqrt{}$  will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- **\*** The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
  - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
  - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

#### **General Principles for Further Pure Mathematics Marking**

(But note that specific mark schemes may sometimes override these general principles).

#### Method mark for solving 3 term quadratic:

#### 1. Factorisation

$$(x^2 + bx + c) = (x + p)(x + q)$$
, where  $|pq| = |c|$ , leading to x = ...

 $(ax^2 + bx + c) = (mx + p)(nx + q)$ , where |pq| = |c| and |mn| = |a|, leading to x = ...

#### 2. Formula

Attempt to use the correct formula (with values for a, b and c).

#### 3. Completing the square

Solving  $x^2 + bx + c = 0$ :  $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$ ,  $q \neq 0$ , leading to x = ...

#### Method marks for differentiation and integration:

#### 1. Differentiation

Power of at least one term decreased by 1.  $(x^n \rightarrow x^{n-1})$ 

#### 2. Integration

Power of at least one term increased by 1.  $(x^n \rightarrow x^{n+1})$ 

| Question<br>Number | Scheme                                                                                                                                                            | Notes                                                                                                                                                | Marks   |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 1(a)               | $\frac{1}{r^{2}} - \frac{1}{(r+1)^{2}} = \frac{(r+1)^{2} - r^{2}}{r^{2}(r+1)^{2}} = \frac{2r+1}{r^{2}(r+1)^{2}}$                                                  | Correct proof (minimum as<br>shown) $((r+1)^2$ or $r^2 + 2r + 1$<br>Can be worked in either direction.                                               | B1      |
|                    |                                                                                                                                                                   |                                                                                                                                                      | (1)     |
| (b)                | $\sum_{r=1}^{n} \left( \frac{1}{r^2} - \frac{1}{(r+1)^2} \right) = 1 - \frac{1}{4} + \frac{1}{4} - \frac{1}{9}$                                                   | $-\frac{1}{n^2} - \frac{1}{\left(n+1\right)^2}$                                                                                                      | M1      |
| _                  | Terms of the series with $r = 1$ , $r = n$ and one of                                                                                                             | r = 2, r = n - 1 should be shown.                                                                                                                    |         |
| _                  | $1 - \frac{1}{\left(n+1\right)^2}$                                                                                                                                | Extracts correct terms that do not cancel                                                                                                            | A1      |
|                    | $\frac{(n+1)^2 - 1}{(n+1)^2} = \frac{n(n+2)}{(n+1)^2} *$                                                                                                          | Correct completion with no errors                                                                                                                    | A1*cso  |
|                    |                                                                                                                                                                   |                                                                                                                                                      | (3)     |
| (c)                | $\sum_{r=n}^{3n} \frac{6r+3}{r^2(r+1)^2} = 3\left(\frac{3n(3n+2)}{(3n+1)^2} - \frac{(n-1)(n+1)}{n^2}\right)$                                                      | Attempts to use<br>$f(3n) - (f(n-1) \operatorname{or} f(n))$<br>3 may be missing                                                                     | M1      |
|                    | $=3\left(\frac{3n^{3}(3n+2)-(3n+1)^{2}(n^{2}-1)}{n^{2}(3n+1)^{2}}\right)$                                                                                         | Attempt at common denominator,<br>Denom to be<br>$n^2(3n+1)^2$ or $(n+1)^2(3n+1)^2$<br>Numerator to be difference of 2<br>quartics. 3 may be missing | dM1     |
|                    | $=\frac{24n^{2}+18n+3}{n^{2}\left(3n+1\right)^{2}}$                                                                                                               | cao                                                                                                                                                  | A1cao   |
| -                  |                                                                                                                                                                   |                                                                                                                                                      | (3)     |
|                    |                                                                                                                                                                   |                                                                                                                                                      | Total 7 |
|                    | Alternative for par                                                                                                                                               | t (c)                                                                                                                                                |         |
|                    | $\sum_{r=n}^{3n} \frac{6r+3}{r^2 (r+1)^2} = 3 \left( \frac{1}{n^2} - \frac{1}{(3n+1)^2} \right)$<br>OR: $3 \left( \frac{1}{(n+1)^2} - \frac{1}{(3n+1)^2} \right)$ | Attempts the difference of 2 terms<br>(either difference accepted)<br>3 may be missing                                                               | M1      |
|                    | $=3\left(\frac{(3n+1)^{2}-n^{2}}{n^{2}(3n+1)^{2}}\right)$                                                                                                         | Valid attempt at common<br>denominator for their fractions<br>3 may be missing                                                                       | dM1     |
|                    | $=\frac{24n^{2}+18n+3}{n^{2}(3n+1)^{2}}$                                                                                                                          | cao                                                                                                                                                  | A1      |
|                    | If (b) and/or (c) are worked with $r$ instead of $n$ do <b>NOT</b> affected.<br>This applies even if $r$ is changed to $n$ at the end.                            | award the final A mark for the parts                                                                                                                 |         |

| <br>Alternative for (b) - by induction. NB: No marks available if result in (a) is not used.                                               |                                                                                                             |    |  |
|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----|--|
| Assume true for $n = k$                                                                                                                    |                                                                                                             |    |  |
| $\sum_{r=1}^{k+1} \frac{2r+1}{r^2 (r+1)^2} = \frac{k(k+2)}{(k+1)^2} + \frac{1}{(k+1)^2} - \frac{1}{(k+2)^2}$                               | Uses $\sum_{r=1}^{k}$ together with the $(k + 1)$ th term as 2 fractions (see (a))                          | M1 |  |
| $. = \frac{k^2 + 2k + 1}{\left(k+1\right)^2} - \frac{1}{\left(k+2\right)^2}.$                                                              |                                                                                                             |    |  |
| $1 - \frac{1}{\left(k+2\right)^2} = \frac{k^2 + 4k + 3}{\left(k+2\right)^2} = \frac{\left(k+1\right)\left(k+3\right)}{\left(k+2\right)^2}$ | Combines the 3 fractions to obtain a single fraction. Must be correct but numerator need not be factorised. | A1 |  |
| Show true for $n = 1$                                                                                                                      | This must be seen somewhere                                                                                 |    |  |
| Hence proved by induction                                                                                                                  | Complete proof with no errors and a concluding statement.                                                   | A1 |  |

| Question<br>Number | Scheme                                                                                                                                                                                   | Notes                                                                                                                                                                            | Marks     |  |  |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|--|
| 2.                 | $\frac{x-2}{2(x+2)} \le \frac{12}{x(x+2)}$                                                                                                                                               |                                                                                                                                                                                  |           |  |  |
| NB                 | Question states "Use algebra" so purely graphical solutions score max 1/9 (the B1). A sketch and some algebra to find CVs or intersection points can score according to the method used. |                                                                                                                                                                                  |           |  |  |
|                    | Can use $\leq$ , $<$ or $=$ for the first 6 marks in                                                                                                                                     | all methods                                                                                                                                                                      |           |  |  |
|                    | $\frac{x-2}{2(x+2)} - \frac{12}{x(x+2)} (\le 0)$                                                                                                                                         | Collects expressions to one side.                                                                                                                                                | M1        |  |  |
|                    | $\frac{x^2 - 2x - 24}{2x(x+2)} (\le 0)$                                                                                                                                                  | M1: Attempt common denominator<br>A1: Correct single fraction                                                                                                                    | M1A1      |  |  |
|                    | $\frac{2\pi(x+2)}{x=0,-2}$                                                                                                                                                               | Correct critical values                                                                                                                                                          | B1        |  |  |
|                    | $x^{2}-2x-24 \Longrightarrow (x+4)(x-6)(=0) \Longrightarrow x = 0$                                                                                                                       | Attempt to solve their quadratic as far as $x = \dots$                                                                                                                           | M1        |  |  |
|                    | <i>x</i> = -4, 6                                                                                                                                                                         | Correct critical values. May be seen on a sketch.                                                                                                                                | A1        |  |  |
|                    | $-4 \le x < -2, \ 0 < x \le 6$<br>with $\le$ or $<$ throughout                                                                                                                           | M1: Attempt two inequalities using their<br>4 critical values in ascending order.<br>(dependent on at least one previous M<br>mark)<br>A1: All 4 CVs in the inequalities correct | dM1A1     |  |  |
|                    | $-4 \le x < -2,  0 < x \le 6$ $[-4, -2) \cup (0, 6]$                                                                                                                                     | A1:Inequality signs correct<br>Set notation may be used. $\cup$ or "or" but<br>not "and"                                                                                         | A1cao (9) |  |  |
|                    |                                                                                                                                                                                          |                                                                                                                                                                                  | Total 9   |  |  |
|                    | Alternative 1: Multiplies                                                                                                                                                                | s both sides by $x^2(x+2)^2$                                                                                                                                                     |           |  |  |
|                    | $x^{2}(x-2)(x+2) \le 24x(x+2)$<br>$x^{3}(x+2) - 2x^{2}(x+2) \le 24x(x+2)$                                                                                                                | Both sides $\times x^2 (x+2)^2$ May multiply by<br>more terms but must be a positive<br>multiplier containing $x^2 (x+2)^2$                                                      | M1        |  |  |
|                    | $x^{3}(x+2)-2x^{2}(x+2)-24x(x+2)(\leq 0)$                                                                                                                                                | M1: Collects expressions to one side<br>A1: Correct inequality                                                                                                                   | M1A1      |  |  |
|                    | x = 0, -2                                                                                                                                                                                | Correct critical values                                                                                                                                                          | B1        |  |  |
|                    | $x^{4} - 28x^{2} - 48x(=0)$<br>x(x+2)(x-6)(x+4)(=0) \Rightarrow x =                                                                                                                      | Attempt to solve their quartic as far as $x =$ to obtain the <b>other</b> critical values<br>Can cancel x and solve a cubic or<br>x and $(x+2)$ and solve a quadratic.           | M1        |  |  |
|                    | <i>x</i> = -4, 6                                                                                                                                                                         | Correct critical values                                                                                                                                                          | A1        |  |  |
|                    | $-4 \le x < -2, \ 0 < x \le 6$<br>with $\le$ or $<$ throughout                                                                                                                           | M1: Attempt two inequalities using their<br>4 critical values in ascending order.<br>(dependent on at least one previous M<br>mark)<br>A1: All 4 CVs in the inequalities correct | dM1A1     |  |  |
|                    | $-4 \le x < -2,  0 < x \le 6$ $[-4, -2) \cup (0, 6]$                                                                                                                                     | A1:Inequality signs correct<br>Set notation may be used. $\cup$ or "or" but<br>not "and"                                                                                         | A1cao (9) |  |  |
|                    |                                                                                                                                                                                          |                                                                                                                                                                                  |           |  |  |

|    | Alternative 2: using a sketch graph<br>(probably from calculator)                             |                                                                                                                                     |                 |  |
|----|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------|--|
|    |                                                                                               | Draw graphs of<br>$y = \frac{x-2}{2(x+2)}$ and $y = \frac{12}{x(x+2)}$                                                              |                 |  |
|    | CVs $x = 0, -2$                                                                               | (Vertical asymptotes of graphs.)                                                                                                    | B1              |  |
|    | $\frac{x-2}{2(x+2)} = \frac{12}{x(x+2)}$                                                      | Eliminate <i>y</i>                                                                                                                  | M1              |  |
|    | x(x-2) = 24                                                                                   | M1: Obtains a quadratic equation<br>A1: Correct equation                                                                            | M1A1            |  |
|    | $x^2 - 2x - 24 \Longrightarrow (x+4)(x-6) = 0 \Longrightarrow x =$                            | Attempt to solve their quadratic as far as $x = \dots$                                                                              | M1              |  |
|    | CVs $x = -4, 6$                                                                               | Correct critical values                                                                                                             | A1              |  |
|    | $-4 \le x < -2,  0 < x \le 6$<br>with $\le$ or $<$ throughout                                 | M1: Attempt two inequalities using their<br>4 critical values in ascending order.<br>(dependent on at least one previous M<br>mark) | dM1             |  |
|    | $-4 \le x < -2, \ 0 < x \le 6$                                                                | A1: All 4 CVs in the inequalities correct<br>A1: All inequality signs correct                                                       | A1<br>A1cao (9) |  |
|    |                                                                                               |                                                                                                                                     |                 |  |
| NB | As above, but with no sketch graph shown:<br>CVs $x = 0, -2$ <b>must</b> be stated somewhere. |                                                                                                                                     | B1              |  |
|    | Otherwise no marks available.                                                                 |                                                                                                                                     |                 |  |
|    |                                                                                               |                                                                                                                                     |                 |  |

|    | Scheme                                                                                                              | Notes                                                                                                                                                                                 | Marks   |
|----|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 3. | $z^3 + 32 + 32$                                                                                                     | $2i\sqrt{3}=0$                                                                                                                                                                        |         |
|    | $\arg(z^3) = \frac{4\pi}{3} \text{ or } -\frac{2\pi}{3}$                                                            | M1: Uses tan to find arg $z^3$<br>arctan $\sqrt{3}$ , arctan $\frac{1}{\sqrt{3}}$ , $\frac{\pi}{3}$ or $\frac{\pi}{6}$ seen.<br>Allow equivalent angles<br>A1: Either of values shown | M1A1    |
|    | z  = r = 4 Correct <i>r</i> seen anywhere (eg only in answers)                                                      |                                                                                                                                                                                       | B1      |
|    | $3\theta = \frac{4\pi}{3}, -\frac{2\pi}{3}, -\frac{8\pi}{3}$                                                        |                                                                                                                                                                                       |         |
|    | $\theta = \frac{4\pi}{9}, -\frac{2\pi}{9}, -\frac{8\pi}{9}$                                                         | Divides by 3 to obtain at least 2 values<br>of $\theta$ which differ by $\frac{2\pi}{3}$ or $\frac{4\pi}{3}$ .                                                                        | M1      |
|    | $\theta = \frac{4\pi}{9}, -\frac{2\pi}{9} \text{ or } \frac{16\pi}{9}, -\frac{8\pi}{9} \text{ or } \frac{10\pi}{9}$ | At least 2 correct (and distinct) values from list shown                                                                                                                              | A1      |
|    | $z = 4e^{\frac{4\pi}{9}i}, \ 4e^{-\frac{2\pi}{9}i}, \ 4e^{-\frac{8\pi}{9}i}$<br>or $4e^{i\theta}$ where $\theta =$  | A1: All correct and in either of the<br>forms shown<br>Ignore extra answers outside the range                                                                                         | A1 (6)  |
|    |                                                                                                                     |                                                                                                                                                                                       | Total 6 |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Notes                                                                                                                                                                                               | Marks |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 4.                 | $y = \ln \left( \int_{-\infty}^{\infty} \frac{1}{2} \int_$ |                                                                                                                                                                                                     |       |
| (a)                | $y = \ln(1 - 2x)^{-1} = (\ln 1) - \ln(1 - 2x)$ $\frac{dy}{dx} = -\frac{1}{1 - 2x} \times -2\left(=\frac{2}{1 - 2x}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M1: $\frac{dy}{dx} = \frac{-1}{(1-2x)} \times \frac{d(1-2x)}{dx}$<br>Must use chain rule ie<br>$\frac{k}{1-2x}$ with $k \neq \pm 1$ needed. Minus sign<br>may be missing.<br>A1: Correct derivative | M1A1  |
| OR                 | $\frac{\mathrm{d}y}{\mathrm{d}x} = (1 - 2x) \times -(1 - 2x)^{-2} \times -2$ $\left(=\frac{2}{1 - 2x}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M1: $\frac{dy}{dx} = \frac{1}{(1-2x)^{-1}} \times \frac{d(1-2x)^{-1}}{dx}$<br>Must use chain rule.<br>Minus sign may be missing.<br>A1: Correct derivative                                          | M1A1  |
|                    | $\frac{d^2 y}{dx^2} = -2 \times (1 - 2x)^{-2} \times -2$ $\left( = \frac{4}{(1 - 2x)^2} \right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Correct second derivative obtained from a correct first derivative.                                                                                                                                 | A1    |
|                    | $\frac{\mathrm{d}^{3} y}{\mathrm{d}x^{3}} = -8 \times (1 - 2x)^{-3} \times -2$ $\left(=\frac{16}{(1 - 2x)^{3}}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Correct third derivative obtained from correct first and second derivatives                                                                                                                         | A1    |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                     | (4)   |
|                    | Alternative by use of exponent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | tials and implicit differentiation                                                                                                                                                                  |       |
| (a)                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $x^{y} = \frac{1}{1-2x} = (1-2x)^{-1}$                                                                                                                                                              |       |
|                    | $e^{y} \frac{dy}{dx} = 2(1-2x)^{-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Differentiates using implicit differentiation and chain rule.                                                                                                                                       | M1    |
|                    | $e^{y} \frac{dy}{dx} = 2(1-2x)^{-2}$ $\frac{dy}{dx} = 2e^{-y} (1-2x)^{-2} \text{ or } \frac{2}{(1-2x)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Correct derivative in either form.<br>Equivalents accepted.                                                                                                                                         | A1    |
|                    | If $\frac{dy}{dx} = \frac{2}{(1-2x)}$ has been used from here,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | see main scheme for second and third derivative                                                                                                                                                     | es    |

| (b) | $(y_0 = 0), y'_0 = 2, y''_0 = 4, y''_0 = 16$ $(y = )(0) + 2x + \frac{4x^2}{2!} + \frac{16x^3}{3!}$ $y = 2x + 2x^2 + \frac{8}{3}x^3$   | Attempt values at $x = 0$ using their<br>derivatives from (a)<br>$y_0 = 0$ need not be seen but other 3 values<br>must be attempted.<br>Uses their values in the correct Maclaurin<br>series. Must see $x^3$ term<br>Can be implied by a final series which is<br>correct for their values. 2!,3! or 2 and 6<br>Correct expression.<br>Must start $y = \dots$ or $\ln\left(\frac{1}{1-2x}\right) = \dots$ | M1<br>M1<br>A1cao |
|-----|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|     | 3                                                                                                                                     | f(x) = allowed <b>only</b> if $f(x)$ is defined to be one of these.                                                                                                                                                                                                                                                                                                                                       |                   |
|     |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                           | (3)               |
|     | Altern                                                                                                                                | ative (b)                                                                                                                                                                                                                                                                                                                                                                                                 |                   |
|     | $y = \ln\left(\frac{1}{1-2x}\right) = -\ln\left(1-2x\right)$                                                                          | Log power law applied correctly                                                                                                                                                                                                                                                                                                                                                                           | M1                |
|     | $= -\left((-2x) - \frac{(-2x)^2}{2} + \frac{(-2x)^3}{3}\right)$                                                                       | Replaces x with $-2x$ in the expansion for $ln(1 + x)$ (in formula book)                                                                                                                                                                                                                                                                                                                                  | M1                |
|     | $y = 2x + 2x^2 + \frac{8}{3}x^3$                                                                                                      | Correct expression                                                                                                                                                                                                                                                                                                                                                                                        | A1cao             |
|     |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                           |                   |
| (c) | $\frac{1}{1-2x} = \frac{3}{2} \Longrightarrow x = \frac{1}{6}$                                                                        | Correct value for <i>x</i> , seen explicitly or substituted in their expansion                                                                                                                                                                                                                                                                                                                            | B1                |
|     | $\ln\left(\frac{3}{2}\right) \approx 2\left(\frac{1}{6}\right) + 2\left(\frac{1}{6}\right)^2 + \frac{8}{3}\left(\frac{1}{6}\right)^3$ | Substitute their value of x into their<br>expansion. May need to check this is<br>correct for their expansion and their x.<br>(Calculator value for $ln\left(\frac{3}{2}\right)$ is 0.405)                                                                                                                                                                                                                | M1                |
|     | = 0.401                                                                                                                               | Must come from correct work                                                                                                                                                                                                                                                                                                                                                                               | A1cso             |
| NB: | $\ln 3 - \ln 2$ or $\ln 3 + \ln \left(\frac{1}{2}\right)$ scores 0/3 as                                                               | $x$ must be $<\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                |                   |
|     | Answer with no working scores 0/3                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                           | (3)               |
|     |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                           | Total 10          |
|     |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                           |                   |

| Question<br>Number | Scheme                                                                                                                                                                                                               | Notes                                                                                                                                                   | Marks    |  |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--|
| 5.                 | $\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - 2\frac{\mathrm{d}y}{\mathrm{d}x} = 26$                                                                                                                                       | $5\sin 3x$                                                                                                                                              |          |  |
| (a)                | $m^2 - 2m = 0 \Longrightarrow m = 0, 2$                                                                                                                                                                              | Solves AE                                                                                                                                               | M1       |  |
|                    | $(CF \text{ or } y =)A + Be^{2x} \text{ or } Ae^{0} + Be^{2x} \text{ oe}$                                                                                                                                            | Correct CF (CF or $y = \text{not needed}$ )                                                                                                             | A1       |  |
|                    | $(PI \text{ or } y =) \ a \cos 3x + b \sin 3x$                                                                                                                                                                       | Correct form for PI (PI or $y = not$ needed)                                                                                                            | B1       |  |
|                    | $\frac{\mathrm{d}y}{\mathrm{d}x} = -3a\sin 3x + 3b\cos 3x, \ \frac{\mathrm{d}^2 y}{\mathrm{d}x^2}$                                                                                                                   | $= -9a\cos 3x - 9b\sin 3x$                                                                                                                              | M1A1     |  |
|                    | M1: Differentiates twice; change of trig funct<br>first derivative, $\pm 1$ , $\pm 3$ or $\pm 9$ for second der<br>A1: Correct derivative                                                                            | ivative (1/3 etc indicates integration)                                                                                                                 |          |  |
|                    | $-9a\cos 3x - 9b\sin 3x + 6a\sin 3x$                                                                                                                                                                                 | $x - 6b\cos 3x = 26\sin 3x$                                                                                                                             |          |  |
|                    | $\therefore -9a - 6b = 0,  -9b + 6a = 26 \Longrightarrow a = \dots, b = \dots$                                                                                                                                       | Substitutes and forms simultaneous<br>equations (by equating coeffs) and<br>attempts to solve for <i>a</i> and <i>b</i><br>Depends on the second M mark | dM1      |  |
|                    | $a = \frac{4}{3}, b = -2$                                                                                                                                                                                            | Correct <i>a</i> and <i>b</i>                                                                                                                           | A1       |  |
|                    | $a = \frac{4}{3}, b = -2$<br>$y = A + Be^{2x} + \frac{4}{3}\cos 3x - 2\sin 3x$                                                                                                                                       | Forms the GS (ft their CF and PI)<br>Must start $y =$                                                                                                   | A1ft (8) |  |
| (b)                | $0 = A + B + \frac{4}{3}$                                                                                                                                                                                            | Substitutes $x = 0$ and $y = 0$ into their GS                                                                                                           | M1       |  |
|                    | $\left(\frac{dy}{dx}\right) = 2Be^{2x} - 4\sin 3x - 6\cos 3x \Longrightarrow 0 = 2B - 6$<br>Differentiates and substitutes $x = 0$ and $y' = 0$ (change of trig functions needed, $\pm 1$<br>or $\pm 3$ for coeffs ) |                                                                                                                                                         |          |  |
|                    | $0 = A + B + \frac{4}{3}, 0 = 2B - 6 \Longrightarrow A =, B =$                                                                                                                                                       | Solves simultaneously to obtain<br>values for A and B<br>Depends on the second M mark                                                                   | dM1      |  |
|                    | $A = \frac{-13}{3},  B = 3$                                                                                                                                                                                          | Correct values                                                                                                                                          | A1       |  |
|                    | $y = 3e^{2x} - \frac{13}{3} + \frac{4}{3}\cos 3x - 2\sin 3x$                                                                                                                                                         | Follow through their GS and A and B<br>Must start $y =$                                                                                                 | A1ft (5) |  |
|                    |                                                                                                                                                                                                                      |                                                                                                                                                         | Total 13 |  |
| ALT for<br>(a)     | $\frac{d^2 y}{dx^2} - 2\frac{dy}{dx} = 26\sin 3x \Longrightarrow \frac{dy}{dx} - 2y = -\frac{26}{3}\cos 3x$                                                                                                          | M1: Integrates both sides wrt x<br>+ c<br>A1: Correct expression                                                                                        | M1A1     |  |
|                    | $I = e^{\int -2dx} = e^{-2x}$                                                                                                                                                                                        | Correct integrating factor                                                                                                                              | B1       |  |
|                    |                                                                                                                                                                                                                      | M1: Uses                                                                                                                                                |          |  |
|                    | $ye^{-2x} = \int e^{-2x} \left( -\frac{26}{3}\cos 3x + c \right) dx$                                                                                                                                                 | $yI = \int I\left(-\frac{26}{3}\cos 3x + c\right) dx$                                                                                                   | M1A1     |  |
|                    | $=\frac{4}{3}e^{-2x}\cos 3x - 2e^{-2x}\sin 3x - \frac{1}{2}ce^{-2x} + B$                                                                                                                                             | A1: Correct expressionM1: Integration by parts twiceA1: Correct expression                                                                              | M1A1     |  |
|                    | $y = -\frac{1}{2}c + Be^{2x} + \frac{4}{3}\cos 3x - 2\sin 3x$                                                                                                                                                        | Must start $y = \dots$                                                                                                                                  |          |  |

| Question<br>Number | Scheme                                                                                                                    | Notes                                                                                                                                                                                                                                           | Marks   |
|--------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 6.                 | $r = 6 + a \sin \theta$                                                                                                   | $n\theta$                                                                                                                                                                                                                                       |         |
|                    | $A = \frac{1}{2} \int \left( 6 + a \sin \theta \right)^2 \mathrm{d}\theta$                                                | Use of $\frac{1}{2}\int r^2(d\theta)$ Limits not needed.<br>Can be gained if $\frac{1}{2}$ appears later                                                                                                                                        | B1      |
|                    | $(6+a\sin\theta)^2 = 36+12a\sin\theta + a^2\sin^2\theta$                                                                  |                                                                                                                                                                                                                                                 |         |
|                    | $(6+a\sin\theta)^2 = 36+12a\sin\theta + a^2\left(\frac{1-\cos 2\theta}{2}\right)$                                         | M1: Squares<br>$(36 + k \sin^2 \theta, \text{ where } k = a^2 \text{ or } a \text{ as}$<br>min) and attempts to change : $\sin^2 \theta$<br>to an expression in $\cos 2\theta$<br>A1: Correct expression                                        | M1A1    |
|                    | $\left(\frac{1}{2}\right)\left[36\theta - 12a\cos\theta + \frac{a^2}{2}\theta - \frac{a^2}{4}\sin 2\theta\right]$         | dM1: Attempt to integrate<br>$\cos 2\theta \rightarrow \pm \frac{1}{2}\sin 2\theta$<br>Limits not needed<br>A1: Correct integration limits not<br>needed                                                                                        | dM1A1   |
|                    | $=36\pi + \frac{\pi a^2}{2}$                                                                                              | Correct area obtained from correct<br>integration and correct limits. No<br>need to simplify but trig functions<br>must be evaluated.                                                                                                           | A1      |
|                    | $36\pi + \frac{\pi a^2}{2} = \frac{97\pi}{2} \Longrightarrow a = \dots$                                                   | Set their area = $\frac{97\pi}{2}$ and attempt to<br>solve for <i>a</i> (depends on both M<br>marks above)<br>If $\frac{1}{2}$ omitted from the initial formula<br>and area set = $97\pi$ , give the B1 by<br>implication as well as this mark. | ddM1    |
|                    | a = 5                                                                                                                     | cao and cso $a = \pm 5$ or $a = -5$ scores<br>A0                                                                                                                                                                                                | A1cso   |
|                    | Alternatives: Splitting the area and so using 2 integrals with different limits.                                          |                                                                                                                                                                                                                                                 | Total 8 |
|                    | Marks the same as the main scheme.                                                                                        | integrais with unrecent limits.                                                                                                                                                                                                                 |         |
| 1                  | Limits 0 to $\pi$ (area above initial line) and limits $\pi$ to $2\pi$ (area below initial line) and add the two results. |                                                                                                                                                                                                                                                 |         |
| 2                  | Limits 0 to $\frac{\pi}{2}$ and $\frac{3\pi}{2}$ to $2\pi$ Twice the sum of                                               | the results needed.                                                                                                                                                                                                                             |         |
|                    |                                                                                                                           |                                                                                                                                                                                                                                                 |         |

| Question<br>Number | Scheme                                                                                                                                                                          | Notes                                                                                                                                                                                                                                                                                                      | Marks    |  |  |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--|--|
| 7.                 | $\cos x \frac{\mathrm{d}y}{\mathrm{d}x} + y \sin x = 2\cos^3 x \sin x + 1$                                                                                                      |                                                                                                                                                                                                                                                                                                            |          |  |  |
| (a)                | $\frac{\mathrm{d}y}{\mathrm{d}x} + y\tan x = 2\cos^2 x\sin x + \frac{1}{\cos x}$                                                                                                | Divides by cos x<br>LHS both terms divided<br>RHS min 1 term divided                                                                                                                                                                                                                                       | M1       |  |  |
|                    | $I = e^{\int \tan x  dx} = e^{\ln \sec x} = \sec x$                                                                                                                             | M1: Attempt integrating factor<br>$e^{\int \tan x dx}$ needed<br>A1: Correct integrating factor,<br>$\sec x$ or $\frac{1}{\cos x}$                                                                                                                                                                         | dM1A1    |  |  |
| ·                  | $y \sec x = \int (2\sin x \cos x + \sec^2 x) dx$                                                                                                                                | Multiply through by their IF and integrate<br>LHS (integration may be done later)<br>$yI = \int (\text{their RHS}) I  dx$                                                                                                                                                                                  | M1       |  |  |
|                    | $y \sec x = -\frac{1}{2}\cos 2x + \tan x(+c)$                                                                                                                                   | M1: Attempt integration of at least one<br>term on RHS (provided both sides have<br>been multiplied by their IF.)<br>OR $\sec^2 x \rightarrow K \tan x$<br>A1: $-\frac{1}{2}\cos 2x$ or equivalent integration<br>of $2\sin x \cos x(\sin^2 x \text{ or } -\cos^2 x)$<br>A1: $\tan x$ constant not needed. | M1A1A1   |  |  |
|                    | $y = \left(-\frac{1}{2}\cos 2x + \tan x + c\right)\cos x$ $y = \left(-\cos^2 x + \tan x + c\right)\cos x$ $y = \left(\sin^2 x + \tan x + c\right)\cos x$                        | Include the constant and deal with it<br>correctly.<br>Must start $y =$<br>Or equivalent eg<br>$y = -\frac{1}{2}\cos 2x\cos x + \sin x + c\cos x$                                                                                                                                                          | A1ft     |  |  |
|                    |                                                                                                                                                                                 | Follow through from the line above                                                                                                                                                                                                                                                                         | (8)      |  |  |
| (b)                | $x = \frac{\pi}{4} \Longrightarrow 5\sqrt{2} = \dots \Longrightarrow c = \dots$                                                                                                 | Substitutes for <i>x</i> and <i>y</i> and solves for <i>c</i><br>(If substitution not shown award for at<br>least one term evaluated correctly.)                                                                                                                                                           | M1       |  |  |
|                    | $x = \frac{\pi}{6} \Longrightarrow y = \dots$                                                                                                                                   | Substitutes $x = \frac{\pi}{6}$ to find a value for y                                                                                                                                                                                                                                                      | M1       |  |  |
|                    | $x = \frac{\pi}{6} \Longrightarrow y = \dots$ $y = \frac{1}{2} + \frac{35}{8}\sqrt{3}$ or $y = 0.5 + 4.375\sqrt{3}$                                                             | Must be in given form. Equivalent fractions allowed.                                                                                                                                                                                                                                                       | A1cao    |  |  |
|                    |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                            | (3)      |  |  |
| NB                 | (b) There may be no working shown due to<br>Final answer correct (and in required form<br>score 3/3. Final answer incorrect (or decim<br>applies whether (a) is correct or not. | with no decimals instead of $\sqrt{3}$ seen),                                                                                                                                                                                                                                                              |          |  |  |
|                    |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                            | Total 11 |  |  |

| Question<br>Number | Scheme                                                                                                                                                 | Notes                                                                                    | Marks |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------|
| 8.                 | $w = \frac{z+z}{1+i}$                                                                                                                                  | $\frac{3i}{z}$                                                                           |       |
| (a)                | $z = \frac{w - 3i}{1 - iw} \text{ oe}$ $ z  = 1 \Longrightarrow \left  \frac{w - 3i}{1 - iw} \right  = 1 \Longrightarrow  w - 3i  =  1 - wi $          | M1: Attempt to make <i>z</i> the subject<br>A1: Correct equation                         | M1A1  |
|                    | $ z  = 1 \Longrightarrow \left  \frac{w - 3i}{1 - iw} \right  = 1 \Longrightarrow  w - 3i  =  1 - wi $<br>$\therefore  u + iv - 3i  =  (u + iv)i - 1 $ | Uses $ z  = 1$ and introduce " $u + iv$ "<br>(or $x + iy$ ) for $w$                      | M1    |
|                    | $u^{2} + (v-3)^{2} = u^{2} + (v+1)^{2}$                                                                                                                | Correct use of Pythagoras on either side.                                                | M1    |
|                    | v = 1 oe                                                                                                                                               | v = 1  or  y = 1                                                                         | A1    |
|                    |                                                                                                                                                        |                                                                                          | (5)   |
|                    | Alternative 1                                                                                                                                          |                                                                                          |       |
|                    | eg $w(1) = \frac{1+3i}{1+i} = 2+i$                                                                                                                     | M1: Maps one point on the circle<br>using the given transformation<br>A1:Correct mapping | M1A1  |
|                    | eg $w(-i) = \frac{2i}{2} = i$                                                                                                                          | Maps a second point on the circle                                                        | M1    |
|                    | v=1 oe                                                                                                                                                 | M1: Forms Cartesian equation using<br>their 2 points<br>A1: $v = 1$ or $y = 1$           | M1A1  |
|                    | Alternative 2                                                                                                                                          | for (a)                                                                                  |       |
|                    | $z = \frac{w - 3i}{1 - iw}  \text{oe}$                                                                                                                 | M1: Attempt to make <i>z</i> the subject<br>A1: Correct equation                         | M1A1  |
|                    | $ z  = 1 \Longrightarrow \left  \frac{w - 3i}{1 - iw} \right  = 1 \Longrightarrow  w - 3i  =  1 - wi $ $ w - 3i  =  w + i  =  w - (-i) $               | Uses $ z =1$ and changes to form<br> w = w  or draws a diagram                           | M1    |
|                    | Perpendicular bisector of points $(0,3)$ and $(0,-1)$                                                                                                  | Uses a correct geometrical approach                                                      | M1    |
|                    | <i>v</i> =1 oe                                                                                                                                         | v = 1  or  y = 1                                                                         | A1    |

|     | Alternative 3                                                                                                       | for (a     |                                                                                                                           |                 |
|-----|---------------------------------------------------------------------------------------------------------------------|------------|---------------------------------------------------------------------------------------------------------------------------|-----------------|
|     | Let $z = x + iy$ , $ z  = 1 \Longrightarrow x^2 + y^2 = 1$                                                          |            |                                                                                                                           |                 |
|     | $w = \frac{z+3i}{1+iz} = \frac{x+iy+3i}{1+i(x+iy)} = \frac{x+i(y+3)}{(1-y)+ix}$                                     |            |                                                                                                                           |                 |
|     | $w = \frac{x + i(y+3)}{(1-y) + ix} \times \frac{(1-y) - ix}{(1-y) - ix}$                                            | num<br>com | stitute $z = x + iy$ and multiply<br>erator and denominator by<br>plex conjugate of their<br>prinator                     | M1              |
|     | $w = \frac{x(1-y) - ix^{2} + i(y+3)(1-y) - i^{2}x(y+3)}{(1-y)^{2} - ix(1-y) + ix(1-y) - i^{2}x^{2}}$                |            |                                                                                                                           |                 |
|     | $w = \frac{\left[x(1-y) + x(y+3)\right] + i\left[-x^2 + (y+3)(1-y)^2 + x^2\right]}{(1-y)^2 + x^2}$                  |            | M1: Multiply out and collect<br>real and imaginary parts in<br>numerator. Denominator must<br>be real.<br>A1: all correct | M1<br>A1        |
|     | $w = \frac{[x - xy + xy + 3x] + i[-x^{2} + y - y^{2} + 3 - 3y]}{1 - 2y + y^{2} + x^{2}}$                            | ]          |                                                                                                                           |                 |
|     | $w = \frac{[4x] + i[-1 + 3 - 2y]}{2 - 2y}$                                                                          | App        | lies $x^2 + y^2 = 1$                                                                                                      | M1              |
|     | $w = \frac{4x + i[2 - 2y]}{2 - 2y} = \frac{4x}{2 - 2y} + i$                                                         |            |                                                                                                                           |                 |
|     | <i>y</i> = 1                                                                                                        | <i>y</i> = | 1 or $v = 1$                                                                                                              | A1              |
| (b) | $ w  = 5 \Longrightarrow \left  \frac{z+3i}{1+iz} \right  = 5 \Longrightarrow  z+3i  = 5 1+iz $                     | Uses       | w  = 5 and introduce " $x + iy$ "                                                                                         | M1              |
|     | $\therefore  x+iy+3i  = 5 (x+iy)i+1 $                                                                               |            | 1 1                                                                                                                       |                 |
|     | $x^{2} + (y+3)^{2} = 25(x^{2} + (1-y)^{2})$                                                                         | Allo       | Correct use of Pythagoras<br>w 25 or 5<br>Correct equation                                                                | M1A1            |
|     | $x^2 + y^2 - \frac{7}{3}y + \frac{2}{3} = 0$                                                                        |            | •                                                                                                                         |                 |
|     | $x^{2} + \left(y - \frac{7}{6}\right)^{2} = \frac{25}{36}$ $a = 0, b = \frac{7}{6}, c = \frac{5}{6}$                |            | mpt circle form or attempt $r^2$<br>the line above.                                                                       | M1              |
|     | $a = 0, b = \frac{7}{6}, c = \frac{5}{6}$                                                                           |            | 2 correct<br>All correct                                                                                                  | A1, A1          |
|     |                                                                                                                     |            |                                                                                                                           | (6)<br>Total 11 |
|     | Or, for the last 3 marks:                                                                                           |            |                                                                                                                           | 10tal 11        |
|     | $\left z - 0 - \frac{7}{6}\mathbf{i}\right  = \frac{5}{6}$                                                          |            |                                                                                                                           | M1A1A1          |
|     | If 0 not shown score M1A1A0<br>No need to list <i>a</i> , <i>b</i> , <i>c</i> separately if answer in this<br>form. |            |                                                                                                                           |                 |

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom