

Mark Scheme (Results)

Summer 2013

GCE Statistics 3 (6691/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2013 Publications Code UA037011 All the material in this publication is copyright © Pearson Education Ltd 2013

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt[4]{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.
- 8. In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme.

Question Number	Scheme						Mar	ks		
	Ch	nolesterol Level	High	Low						
1.	High		7.6	12.4	20]	M1A	. 1		
1.	Low		30.4	49.6	80		IVI I P	1		
			38	62	100					
								(2)		
	H_0 : Chol	lesterol level is ind	ependent of intake	of saturated f	ats(no associa	tion)	B1			
	H ₁ : Cholesterol level is not independent of intake of saturated fats (association)									
	0	E	$\frac{(O-E)^2}{E}$		$\frac{O^2}{E}$					
		E	E		Ε					
	12	7.6 2	2.547 or $\frac{242}{95}$	18.947	or $\frac{360}{19}$		dM1			
	8		$.56129$ or $\frac{242}{155}$		or $\frac{160}{31}$		A1			
	26		0.6368 or $\frac{121}{190}$		5 or $\frac{845}{38}$					
	54	49.0 0	$\frac{0.3903 \text{ or } \frac{121}{310}}{\frac{1.2^2}{7.6} + \frac{8^2}{12.4}}$	38.790	Or $\frac{1}{62}$					
	$\sum \frac{(O-I)}{2}$	$\frac{E^{2}}{2}$ =5.1358234.	$\frac{1.2^2}{1.2^2} + \frac{8^2}{1.2^2}$	$+\frac{26^2}{100}+\frac{54}{100}$	-100 = 5.1	4 (awrt 5.14)	A1	(3)		
			7.6 12.4	30.4 49.	6					
		1)(2-1) = 1					B1			
	$\chi_1^2(0.05)$						B1 M1	(2)		
	5.14 > 3.841 so sufficient evidence to reject H ₀ [Condone "accept H ₁ "]									
	Association between cholesterol level and saturated fat intake						A1	(2)		
	Notos							10		
	NotesMinimum working use part marks: E_i (2), Hyp (1), 5.14 (3), 3.841 (2), Conclusion									
	1 st M1	for some use of	$\frac{\text{Row Total} \times \text{Co}}{\text{Grand Total}}$	$\frac{1.101a1}{a1}$. Maj	y be implied	by correct E_i				
	1 st A1		frequencies corr							
	1 st B1					·		1		
		• •	neses. Must men nship" or "correla							
	$2^{nd} dM1$		rrect terms (as in 3				ith their	E_{\cdot}		
			l st M1 Accept 2s			-		ı		
	$2^{nd} A1$	-	ms. May be implie	•						
		Allow truncation	n eg 2.54 3^{rd} Al	for awrt 5.14	4					
	2 nd B1	for correct deg	rees of freedom (may be imp	lied by a cv o	of 3.841)				
	3 rd M1 for a correct statement linking their test statistic and their cv(cv could be 2.						05 or >	3.5)		
	Contradictory statements score M0 e.g. "significant, do not reject H ₀ "							2.2)		
4 th A1 for a correct comment in context - must mention "cholestorol" and "fats"							ıts"			
	condone "relationship" or "connection" here but not "correlation".									
	e.g. "There is evidence of a relationship between cholesterol level and fat intake" No follow through. If e.g hypotheses are the wrong way round A0 here.						ake"			
		No follow throu	gh. If e.g hypothe	eses are the v	wrong way r	ound A0 here	•			

Question Number				S	Scheme	!					Marks
2(a)	Uni	Α	В	С	D	Ε	F	G			
	Staff-Stu	2	4	3	5	7	1	6			
	Satisfaction	3	2	6	4	5	1	7			M1A1A1
	$\begin{bmatrix} d \end{bmatrix}$ d^2	-1	2	-3	1	2	0	-1		_	
	d^2	1	4	9	1	4	0	1	20		
	$r_s = 1 - \frac{6 \times 20}{7(49 - 1)}$	$\frac{0}{1} = 0.6$	542857		(accej	pt $\frac{9}{14}$)		(8	awrt 0. 0	643)	dM1A1 (5)
(b)	H ₀ : $\rho = 0$										
. ,	$H_{1:} \rho \neq 0 \ (\rho > $	· 0)									B1
	Critical value	is ±0.7	7857(±	0.7143	for a c	one taile	ed test)				B1
	0.643 <cv in<="" so="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><th></th><td></td></cv>										
	There is insuff staff-student ra				ggest a	(positiv	/e) corr	elation	betwee	en	B1ft
	stall-student la		1 5411516	iction.							(3)
											Total 8
	at				Notes						
(a)			-				-			(at lea	ast 4 correct)
		-				ne or bo				- f	and analyse)
						_					ersed ranks)
	2^{nd} dM1 for use of the correct formula, follow through their $\sum d^2$ (Dependent on 1^{st} M1)										
	If answer is not correct, a correct expression is required.										
	3^{rd} A1 If \sum	$\int d^2 = 2$	20 for a	wrt 0.6	643 <u>or</u> i	f $\sum d^2$	=92 for	r awrt -	- 0.643	(accep	$pt \pm \frac{9}{14}$)
(b)	1 st B1 for b	oth hyp	otheses	in term	s of ρ , o	one tail	H ₁ must	t be con	npatible	with th	eir ranking
	Hypotheses just in words e.g. "no correlation" score B0 2^{nd} B1 for cv of 0.7857 or 0.7143 for one-tailed test (accept <u>+</u>) Their cv must be compatible with their H ₁ which may be in words										
	If hypotheses are the wrong way around this must be B0 but 3 rd B1 is possible. 3 rd B1ft for a correct contextualised comment. Must mention "ratio" or "no. of students per member of staff" <u>and</u> "satisfaction"										
	Follow through their r_s and their cv (provided it is $ cv < 1$)										
	Don't insist on the word "positive" for a one-tailed test Use of "association" is B0										
	Independent of 1^{st} B1 so if $ r_s > \text{cv} $ must say there is sufficient evidence of(o.e.)										
	and if $ r_s < cv $ must say insufficient evidence of (o.e.) regardless of their hypotheses										
	Contradictory statements score B0										
	(This m	ark is j	ust test	ing inte	erpretat	tion of c	compari	ison of	their r	$\frac{1}{3}$ and the	neir cv)

Question Number	Scheme	Marks					
3(a)i e.g e.g	Quota Sampling: Advantages: Fieldwork can be done quick ly, <u>or</u> administering the test is easy , <u>or</u> costs are kept to a minimum (cheap), <u>or</u> gives estimates for each course. <u>or</u> OK for large populations <u>or</u> sampling frame not required (o.e.) Disadvantages: Non-random process <u>or</u> not possible to estimate the sampling errors, <u>or</u> non response not recorded, <u>or</u> interviewer can introduce bias in	B1					
3(a)ii e.g.	sample choice. (o.e.) Stratified Sampling: Advantages: Can give accurate estimates as it is a random process, <u>or</u> gives estimates for each course <u>or</u> representative of [BUT not "proportional" to] the whole pervlation (a.e.)						
e.g.	the whole population. (o.e.) Disadvantages: Sampling frame required, <u>or</u> strata may not be clear as some students overlap courses <u>or</u> not suitable for large populations. (o.e.)	B1					
3(b)	Total enrolments=1000 (may be implied by calculations) Leisure and Sport= $\frac{420}{1000} \times 100 = 42$	(2) B1 M1					
	Information Technology= $\frac{337}{1000} \times 100 = 33.7 = 34$ Health and Social Care= $\frac{200}{1000} \times 100 = 20$ Media Studies= $\frac{43}{1000} \times 100 = 4.3 = 4$	A1					
3(c)	The college's information system would be used to identify each student and which course they are enrolled on. i.e. idea of sampling frame or list for each course . Use of random numbers to select required number of students from each	(3) B1 B1					
	course	(2) Total 7					
	Notes						
(a)	Do not penalise for lack of context in part (a) 1 st B1 for an advantage and a disadvantage for quota sampling (must be 1 st or 1 2 nd B1 for an advantage and a disadvantage for stratified sampling (2 nd or label Do not allow opposite pairs e.g. "quicker/easier" for quota sampling and "takes a lon difficult" for stratified <u>or</u> quota "easy to use" but strat. "hard for large populations" Do not allow same reason for both e.g. "gives estimates for each course"	lled (ii))					
(b)	M1 for one correct calculation, ft their "1000" A1 for 42, 34, 20 and 4 only						
(c)	 1st B1 for some mention of a suitable <u>sampling frame</u>. Need not give the specific term but a suitable source of list is required for all students <u>in each course</u>. 2nd B1 for mentioning use of <u>random numbers</u> or some random selection process <u>for each course</u>. If they are describing systematic sampling score B0 here 						

Question Number	Scheme							
4 (a)	$\overline{x} = \frac{8 \times 1.5 + 12 \times 4 + 13 \times 5.5 + 9 \times 7 + 8 \times 10}{50} = \frac{274.5}{50} = 5.49 $ (*)							
- (a)	$\overline{x} = 6000000000000000000000000000000000000$							
	$s^{2} = \frac{8 \times 1.5^{2} + 12 \times 4^{2} + 13 \times 5.5^{2} + 9 \times 7^{2} + 8 \times 10^{2}}{10} - \frac{50}{10} 5.49^{2}, = 6.88 $ (*)							
	$s^{2} = \frac{8 \times 1.5^{2} + 12 \times 4^{2} + 13 \times 5.5^{2} + 9 \times 7^{2} + 8 \times 10^{2}}{49} - \frac{50}{49} 5.49^{2}, = 6.88 $ (*)							
(b)	$a = 50 \times P(6 < X < 8) = 50 \times P(0.194 < Z < 0.956)$							
	a = 12.81 (tables) or 12.68 (calc) = 8.24 (tables) or 8.47 (calc)							
	b = 50 - (28.85 + a) = 8.34 (tables) or 8.47 (calc)							
(c)	H ₀ : Norma	l distrib	oution is a good fit	H _{1:} Normal distributi	on is not a good fit	B1	(3)	
		2	-	-	-	-		
	Class	0	E	$rac{O^2}{E}$	$\frac{\left(O-E\right)^2}{E}$			
				E		M1		
	0-3	8	8.56	7.4766	0.0366			
	3-5	12	12.73	11.31186	0.0418	-		
	5-6	13	7.56	22.354497	3.9144	A1		
	6-8	9 8	12.68 or (12.81)	$(6.32) \sim 6.38801$	$1.0680 \sim (1.13)$			
	8-12	8	(8.34) or 8.47	7.556080~ (7.67)	(0.013) ~ 0.0260			
	$ = O^2 $							
	$\sum \frac{1}{E} - N$	= 5.08'	7~ 5.1400	2	awrt (5.09 ~ 5.14)	A1		
	v = 5 - 3 =			5-3 or 2 can be imp	lied by 5.991 seen)	B1		
	$\chi^2_2(0.05) =$	5.991		1	•	B1		
			ufficient evidence t	o reject H_0		M1		
			on is a good fit.	5		A1	(8)	
						Total	14	
(-)	D1			Notes				
(a)				t least 3 products on n	1844 25 15			
	M1 for a correct expression with at least 3 correct products on num or $\frac{1844.25}{49} - \frac{1507.005}{49}$							
	$\underline{\text{or}} \frac{337.245}{49} \underline{\text{or}} \left(\frac{7377}{200} - 5.49^2\right) \times \frac{50}{49} \text{ etc Allow 3sf accuracy}$							
	A1cso for 6.88 with M1 scored and no incorrect working seen							
(b)				ne normal dist. Correct u			seen	
				or b in range 8.34~ 8				
	2^{nd} A1ft for $50 - 28.85$ – their <i>a</i> (or <i>b</i>) (but requires M1). Allow awrt 3sf. Must add up to 50							
(c)	1 st B1 for both hypotheses. B0 if they include 5.49 or 6.88. Condone $X \sim N(\mu, \sigma^2)$ etc							
(-)		-	-	-				
	1 st M1 for	attemp	ting $\frac{(U-L)}{E}$ or $\frac{U}{E}$	$\frac{D^2}{E}$, at least 3 correct e	xpressions or values			
			1	rd or 4 th column. (2 dp			7)	
				es for the last two rows		······································	''	
	2^{nd} A1 for	r a test	statistic that is awrt	5.09 ~ 5.14. Award M	M1A1A1 if this is ob			
	2^{nd} M1 for	or a cor	rect statement base	d on their test statistic	(>1) and their cv $(>$			
				ore M0 e.g. "significan	- 0			
	3 rd A1 fo	r a corre	ect comment suggesti	ng that normal model is	suitable <u>or</u> manager's	belief is		
	correct. No	ft.Cor	done mention of 5.4	9 or 6.88 here. Hypothes	ses wrong way round s	cores A()	

Question Number	Scheme	Marks				
5 (a)	Let $L \sim N(50, 25)$ and $S \sim N(15, 9)$					
	Let $X = L - (S_1 + S_2 + S_3)$	B1				
	$E(X) = 50 - 3 \times 15 = 5$	B1				
	$Var(X) = 25 + 3 \times 9 = 52$	M1A1				
	$P(X < 0) = P\left(Z < \frac{-5}{\sqrt{52}}\right)$	dM1				
	= P(Z < -0.693)	. 1				
	$= 0.244 \text{ or } 0.2451 \text{ (tables)} \qquad (awrt \ 0.244 \sim 0.245)$	A1 (6)				
(b)	Let $Y = L - 3S$	(6) B1				
(0)	$E(Y) = 50 - 3 \times 15 = 5$	B1				
	$Var(Y) = 25 + 3^2 \times 9 = 106$	M1A1				
	$P(Y > 0) = P\left(Z > \frac{-5}{\sqrt{106}}\right)$	dM1				
	= P(Z > -0.4856)					
	$=0.686 \text{ or } 0.6879 \text{ (tables)} \qquad (awrt \ 0.686 \sim 0.688)$	A1				
		(6)				
		Total 12				
	Notes $1^{\text{st}} B1$ for forming a suitable variable X explicitly seen. Do not give for $L - L$	25 hut				
(a)	1 st B1 for forming a suitable variable X <u>explicitly</u> seen. Do not give for L – allow $L - (S + S + S)$	55 Dut				
	$2^{\text{nd}} B1$ for $E(X) = 5$ (or -5 if their X is defined the other way around)					
	1 st M1 for an attempt at $Var(X) = Var(L) + 3Var(S)$. Do not condone 5 for "25" or	3 for "9"				
	1 st A1 for 52					
	$2^{nd} dM1$ for attempting the correct probability and standardising with their mean and sd.					
	This mark is dependent on 1^{st} M1 so if X is not being used or wrong variance score M0 If their method is not crystal clear then they must be attempting P(Z < -ve value)					
	or $C = C$	ve value)				
	$P(Z > +ve value)$ i.e. their probability <u>after</u> standardisation should lead to $2^{nd} A1$ for awrt 0.244 ~ 0.245	a prob. < 0.5				
	Correct ans. only scores 5/6 (or 6/6 if 1 st B1) but must be clearly labelled as (a) or the	first answer.				
(b)	1 st B1 for defining a new variable $[Y =] \pm (L - 3S)$. May be implied by a corr 2 nd B1 for E(Y) = 5 (or - 5 if their Y is defined as $Y = 3S - L$)	rect variance.				
	1 st M1 for an attempt at $Var(Y) = Var(L) + 3^2 Var(S)$. Do not condone 5 for "25" of 1 st A1 for 106 only	r 3 for "9"				
	2^{nd} dM1 for attempting the correct probability and standardising with their mean and sd. This mark is dependent on 1^{st} M1 so if Y is not being used or wrong variance score M0					
	If their method is not crystal clear then they must be attempting $P(Z > - \gamma)$ or	ve value)				
	$P(Z < +ve value)$ i.e. their probability <u>after</u> standardisation should lead to $2^{nd} A1$ for an awrt 0.686 ~ 0.688	a prob. > 0.5				
	Correct answer only scores 6/6 but must be clearly labelled as (b) or the second	ond answer.				

Questi Numb		Scheme						
6	(a)	$\mathbf{H}_0: \boldsymbol{\mu}_{new} - \boldsymbol{\mu}_{old} = 1$	B1					
		$\mathbf{H}_{1}:\boldsymbol{\mu}_{new}-\boldsymbol{\mu}_{old}>1$						
		$z = \frac{7 - 5.5 - 1}{\sqrt{\frac{0.5}{60} + \frac{0.75}{70}}} = 3.62254$ (awrt 3.62)	M1 A1A1 A1					
		Critical value $z = 1.6449$ (allow \pm)						
		[3.62 > 1.6449] so sufficient evidence to reject H ₀	dM1					
		Evidence that the mean yield of new variety is more than 1 kg greater than the old variety.	A1					
	(b)							
		Notes	Total 11					
		$1^{\text{st}} \& 2^{\text{nd}} B1$ for hypotheses. Accept μ_1, μ_2 or μ_A, μ_B etc if there is some indica	tion of					
	(a)	(a) which is which e.g. $A \sim N(\mu_A, 0.5)$						
		1 st M1 for an attempt at se. Condone switching 0.5 and 0.75 $\sqrt{\frac{0.5 \text{ or } 0.75}{60} + \frac{0.75 \text{ or } 0.5}{70}}$						
		1 st A1 for a correct expression for denominator of test statistic or 0.138 or $\sqrt{0.0190}$ 2 nd A1 for a correct numerator of test statistic (must have the -1) 3 rd A1 for awrt 3.62 [Allow - 3.62 from numerator of 5.5 - 7 - 1 and compatible H ₁] 3 rd B1 for ± 1.6449 seen <u>or</u> probability of 0.0002 (tables) or 0.000145(calc) [allow 0.0001] 2 nd dM1 dep. on 1 st M1 for a correct statement based on their normal cv and their test statistic 2 nd A1 for correct comment in context. Must mention "yield" <u>and</u> "varieties" or "old"						
A	LT	and "new" and "1" If second B mark is B0 award A0 here Pooled estimate: If they calculate $s_p = \sqrt{0.41845} = 0.64688$ allow 1 st M1, 1 st A1 for expression (or awrt 0.114) and 2 nd A1 if numerator correct but A0 for test statistic (4.39)						
	(b)	$1^{st} B1$ for mention of mean (yield) and normal (distribution) $2^{nd}B1$ for mention of sample (size) being large in this case						

Question Number	Scheme	Marks
7 (a)	$\hat{\mu} = \bar{x} = \frac{33.29}{8} = 4.16125$ (awrt 4.16)	B1
	$\hat{\mu} = \overline{x} = \frac{33.29}{8} = 4.16125 \qquad (\text{ awrt } 4.16)$ $\hat{\sigma}^2 = s^2 = \frac{4.12^2 + 5.12^2 + \dots - 8 \times \overline{x}^2}{7}$	M1
	$\hat{\sigma}^2 = s^2 = \frac{141.4035 - 138.528013}{7} = 0.41078$ (awrt 0.411)	A1 (2)
(b)		(3) B1
	$\sum x^2 = "141.4035" + 31 \times 0.25 + 32 \times 4.55^2 (= 811.6335) $ (awrt 812) 178 89 ²	M1A1
	Combined sample: $s^2 = \frac{811.6335 - \frac{178.89^2}{40}}{39} = 0.29724865$ (awrt 0.297)	M1A1
	$\frac{s}{\sqrt{n}} = \frac{\sqrt{0.297}}{\sqrt{40}} = 0.0862 $ (awrt 0.0862)	M1A1
	-100σ 178.89 $100 0.67$	(7)
(c)	$\overline{x} \pm 1.96 \frac{\sigma}{\sqrt{n}} = \frac{178.89}{40} \pm 1.96 \frac{0.67}{\sqrt{40}}$	M1B1
	= (4.2646, 4.67988) awrt (4.26 [or 4.265], 4.68)	A1 (3)
	Notes	Total 13
(a)	M1 for an attempt at s^2 : correct denom, clear attempt at $\sum x^2$ and ft their \overline{x}	Ans only 2/2
(b)	B1 for correct sum or mean or fully correct expression (accept mean = awrt 4.47) \mathbf{N}	
	1^{st} M1 for their $141.4035 + 31 \times 0.25 + 32 \times 4.55^2$ or "141.4035" + 7.75+ 662.48 (ac	
	Beware: $32(0.25 + 4.55^2) + "141.4035" = awrt 812 but scores M0A0.$ 1 st A1 for a fully correct expression (all to 3sf or better) or answer only = aw	rt 812
	2^{nd} M1 for a correct expression using their values	0.5.1
	3 rd M1 dependent on using a changed s^2 (not their 0.411 or 0.25) for $\frac{\sqrt{0.2}}{\sqrt{4}}$	$\frac{97^{\circ}}{0}$
	This s^2 must be based on a <u>combination</u> of their 0.411 and 0.25 e.g. 0.	
(c)	M1 for $\overline{x} \pm z \times \frac{\sigma}{\sqrt{n}}$ for any z (> 1.5) and ft their \overline{x} based on combining their 4	
	do not award for simply using 4.55 or their 4.16. Condone $\sigma = \sqrt{\text{their } 0.297}$	or their (b)
	B1 for $z = 1.96$ used in an attempt at a CI, may for example miss \sqrt{n} A1 for both limits awrt 3sf. Allow lower limit of 4.265	

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u> Order Code UA037011 Summer 2013

For more information on Edexcel qualifications, please visit our website <u>www.edexcel.com</u>

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

