

# Mark Scheme (Results)

Summer 2015

Pearson Edexcel GCE in Statistics 3 (6691/01)



#### **Edexcel and BTEC Qualifications**

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of gualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can touch with the details on contact get in us using our us page at www.edexcel.com/contactus.

#### Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <u>www.pearson.com/uk</u>

Summer 2015 Publications Code UA042717 All the material in this publication is copyright © Pearson Education Ltd 2015 • All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

• Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.

• Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.

• There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.

• All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

• Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.

• Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

## PEARSON EDEXCEL GCE MATHEMATICS

### General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol  $\sqrt{}$  will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- \* The answer is printed on the paper or ag- answer given
- \_ or d... The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
  - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
  - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

## June 2015 6691 S3 Mark Scheme

| Ques | tion<br>bor | Scheme                                                                                                                                                                                                  |                                                                                                  |          |          |                 |                  |         |          |                     | Mark                                  | s                   |            |            |          |
|------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------|----------|-----------------|------------------|---------|----------|---------------------|---------------------------------------|---------------------|------------|------------|----------|
| 1.   | (a)         | Label all the books from $1 - 160$ (o.e.)                                                                                                                                                               |                                                                                                  |          |          |                 |                  |         |          |                     | B1                                    |                     |            |            |          |
|      | ()          | Use random numbers to select the 10 books                                                                                                                                                               |                                                                                                  |          |          |                 |                  |         |          |                     | B1                                    | (2)                 |            |            |          |
|      | (b)         | Book A B C D E F G H I J                                                                                                                                                                                |                                                                                                  |          |          |                 |                  |         |          |                     |                                       |                     | (2)        |            |          |
|      |             | Borrow rank                                                                                                                                                                                             | 1                                                                                                | 2        | 3        | 4               | 5                | 6       | 7        | 8                   | 9                                     | 10                  |            |            |          |
|      |             | Page rank                                                                                                                                                                                               | 1                                                                                                | 6        | 4        | 2               | 8                | 3       | 10       | 7                   | 5                                     | 9                   | -          | M1         |          |
|      |             | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                   |                                                                                                  |          |          |                 |                  |         |          |                     | M1                                    |                     |            |            |          |
|      |             | $r_s = 1 - \frac{6 \times 66}{10(100 - 1)}, [= 1 - 0.4] = 0.6$ <u><b>0.6</b></u>                                                                                                                        |                                                                                                  |          |          |                 |                  |         |          |                     | M1,A1                                 |                     |            |            |          |
|      |             |                                                                                                                                                                                                         |                                                                                                  |          |          |                 |                  |         |          |                     |                                       |                     |            |            | (4)      |
|      | (c)         | H <sub>0</sub> : $\rho = 0$ H                                                                                                                                                                           | $[1: \rho >$                                                                                     | > 0      |          |                 |                  |         |          |                     |                                       |                     |            | B1         |          |
|      |             | Critical value                                                                                                                                                                                          | is 0.56                                                                                          | 536      |          |                 |                  |         |          |                     |                                       |                     |            | B1         |          |
|      |             | 0.6 > cv so sig                                                                                                                                                                                         | 0.6 > cv so significant result and sufficient evidence to reject H <sub>0</sub>                  |          |          |                 |                  |         |          |                     |                                       | DIG                 |            |            |          |
|      |             | There is support for the librarian's belief                                                                                                                                                             |                                                                                                  |          |          |                 |                  |         |          |                     | Blft                                  |                     |            |            |          |
|      |             | or there is evidence of a correlation between the number of pages in a book<br>and the number of times it is borrowed                                                                                   |                                                                                                  |          |          |                 |                  |         |          |                     |                                       |                     | (3)        |            |          |
|      |             | and the function of three it is contowed.                                                                                                                                                               |                                                                                                  |          |          |                 |                  |         |          |                     |                                       |                     | Total 9    | )          |          |
|      |             |                                                                                                                                                                                                         |                                                                                                  |          |          | No              | otes             |         |          |                     |                                       |                     |            |            |          |
|      | (a)         | <ul> <li>1<sup>st</sup> B1 for labelling\numbering\listing\using sampling frame of all 160 books</li> <li>2<sup>nd</sup> B1 for use of random numbers\selection and mentioning the number 10</li> </ul> |                                                                                                  |          |          |                 |                  |         |          |                     |                                       |                     |            |            |          |
|      | (h)         | 1 <sup>st</sup> M1 for a                                                                                                                                                                                | $1^{st}$ M1 for an attempt to rank the number of pages ( at least 4 correct) Allow reverse ranks |          |          |                 |                  |         |          |                     | anks                                  |                     |            |            |          |
|      | ()          | $2^{nd}$ M1 for attempt at $d^2$ row (may be implied by sight of $\sum d^2 = 66$ or 264 for reverse ra                                                                                                  |                                                                                                  |          |          |                 |                  |         |          | nks)                |                                       |                     |            |            |          |
|      |             | $3^{rd}$ M1 for use of the correct formula, follow through their $\sum d^2$ if clearly stated                                                                                                           |                                                                                                  |          |          |                 |                  |         |          |                     |                                       |                     |            |            |          |
|      |             | If answer is not correct, a correct expression is required.                                                                                                                                             |                                                                                                  |          |          |                 |                  |         |          |                     |                                       |                     |            |            |          |
|      |             | A1 for 0.                                                                                                                                                                                               | A1 for 0.6 (or $-0.6$ for reverse ranks)                                                         |          |          |                 |                  |         |          |                     |                                       |                     |            |            |          |
|      | (c)         | 1 <sup>st</sup> B1 for bo                                                                                                                                                                               | oth hyp                                                                                          | othese   | s in ter | ms of           | $\rho$ , one     | tail H  | ı (com   | patible             | with r                                | anks)               | Allo       | ow use of  | $\rho_s$ |
|      |             | . Hyj                                                                                                                                                                                                   | pothes                                                                                           | es just  | in wo    | ords e.         | g. "no           | correl  | lation'  | ' score             | B0.                                   |                     |            |            |          |
|      |             | 2 <sup>nd</sup> B1 for                                                                                                                                                                                  | cv of                                                                                            | 0.5636   | 5 [      | If they         | have have        | a two   | tail I   | $\mathbf{H}_1$ then | allow                                 | 0.64                | 85]        |            |          |
|      |             | All                                                                                                                                                                                                     | ow <u>+</u> f                                                                                    | for rev  | erse ra  | anking          | but n            | nust be | e same   | sign a              | as $r_s$                              |                     |            |            |          |
|      |             | If h                                                                                                                                                                                                    | ypoth                                                                                            | eses ai  | e the    | wrong           | way a            | around  | l this r | nust b              | e B0 t                                | out 3 <sup>rd</sup> | <b>B</b> 1 | is possibl | le.      |
|      |             | 3 <sup>rd</sup> B1ft for                                                                                                                                                                                | a corr                                                                                           | ect co   | ntextu   | alised          | comn             | ient. I | Must r   | nentio              | n "lib                                | rarian'             | ' (01      | he)        |          |
|      |             | <u>or</u><br>Fo                                                                                                                                                                                         | nume<br>11 nume                                                                                  | ber of j | pages    | and<br>r and    | DOITO<br>d their | wing    | rovide   | d it is             |                                       | 1)                  |            |            |          |
|      |             | Do                                                                                                                                                                                                      | n't ind                                                                                          | nougi    | the w    | $r_s$ and $r_s$ |                  | ev (pi  | 'negat   | un 15               | $ \mathbf{c}\mathbf{v}  < \mathbf{c}$ | r)<br>na taile      | nd to      | et         |          |
|      |             | Use of "association" is B0                                                                                                                                                                              |                                                                                                  |          |          |                 |                  |         |          |                     |                                       |                     |            |            |          |
|      |             | Independent of 1 <sup>st</sup> B1 so if $ r_s  >  cv $ must say there is sufficient evidence of(o.e.)                                                                                                   |                                                                                                  |          |          |                 |                  |         |          |                     |                                       |                     |            |            |          |
|      |             | and if $ r_s  <  cv $ must say insufficient evidence of (o.e.) regardless of their hypotheses                                                                                                           |                                                                                                  |          |          |                 |                  |         |          |                     |                                       |                     |            |            |          |

| Question<br>Number | Scheme                                                                                                                                                                                                                                   |                             |  |  |  |  |  |  |  |  |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--|--|--|--|--|--|--|--|
| 2. (a)             | H <sub>0</sub> : $\mu_g - \mu_s = 1.5$ [ $g = \text{ in a group, } s = \text{ on their own }$ ]                                                                                                                                          |                             |  |  |  |  |  |  |  |  |
|                    | $H_1: \mu_g - \mu_s > 1.5$                                                                                                                                                                                                               |                             |  |  |  |  |  |  |  |  |
|                    | s.e. = $\sqrt{\frac{2.1^2}{80} + \frac{1.4^2}{65}} = \left[\sqrt{0.08527}\right] = [0.292]$                                                                                                                                              |                             |  |  |  |  |  |  |  |  |
|                    | $z = \frac{8.7 - 6.6 - 1.5}{"\sqrt{\frac{2.1^2}{80} + \frac{1.4^2}{65}}"}$                                                                                                                                                               |                             |  |  |  |  |  |  |  |  |
|                    | = 2.0546 awrt $2.05(5)$                                                                                                                                                                                                                  | A1                          |  |  |  |  |  |  |  |  |
|                    | cv 1% one tailed = 2.3263                                                                                                                                                                                                                |                             |  |  |  |  |  |  |  |  |
|                    | Insufficient evidence that using plan as part of a group leads to weight loss of more than 1.5 kg than using plan on one's own                                                                                                           | A1ft                        |  |  |  |  |  |  |  |  |
|                    | or researcher's belief not supported                                                                                                                                                                                                     | (8)                         |  |  |  |  |  |  |  |  |
| (b)                | ) Since sample is large Central Limit Theorem (CLT) applies                                                                                                                                                                              |                             |  |  |  |  |  |  |  |  |
|                    | No need to <u>assume</u> normal distribution                                                                                                                                                                                             |                             |  |  |  |  |  |  |  |  |
|                    |                                                                                                                                                                                                                                          | (2)<br><b>Total 10</b>      |  |  |  |  |  |  |  |  |
|                    | Notes                                                                                                                                                                                                                                    |                             |  |  |  |  |  |  |  |  |
|                    | 1 <sup>st</sup> & 2 <sup>nd</sup> B1 for hypotheses. Accept $\mu_1, \mu_2$ or $\mu_A, \mu_B$ etc if there is some indication of                                                                                                          |                             |  |  |  |  |  |  |  |  |
| (a)                | which is which e.g. $G \sim N(\mu_g, 8.7)$                                                                                                                                                                                               |                             |  |  |  |  |  |  |  |  |
|                    | 1 <sup>st</sup> M1 for an attempt at se with 3 out of 4 values correct. Condone switching 2.1 and 1.4                                                                                                                                    |                             |  |  |  |  |  |  |  |  |
|                    | $\sqrt{\frac{2.1^2 \text{ or } 1.4^2}{90} + \frac{1.4^2 \text{ or } 2.1^2}{65}}$                                                                                                                                                         |                             |  |  |  |  |  |  |  |  |
|                    | $\gamma = \delta 0$ = $0.5$<br>$2^{nd} dM1$ dependent on $1^{st} M1$ for a correct numerator(must have -1.5) and ft th                                                                                                                   | eir se                      |  |  |  |  |  |  |  |  |
|                    | $1^{\text{st}}$ A1 for awrt 2.05                                                                                                                                                                                                         |                             |  |  |  |  |  |  |  |  |
|                    | $3^{rd}$ B1 for $\pm 2.3263$ or better seen or probability of awrt 0.02                                                                                                                                                                  |                             |  |  |  |  |  |  |  |  |
|                    | $2^{nd}$ Alft dep. on 1 <sup>st</sup> M1 for a correct statement based on their normal cv and their te $2^{nd}$ Alft for correct comment in context. Must mention "plan" and "group or i and "1.5" or "researcher" and "belief or claim" | st statistic<br>individual" |  |  |  |  |  |  |  |  |
|                    | NB Use of cv for difference in means <i>D</i> will have $D = 1.5 + 2.3263 \times s.e. = awrt 2.18$ and requires sight of $d = 2.1$ with a comment for the 3 <sup>rd</sup> M1                                                             |                             |  |  |  |  |  |  |  |  |
| (b)                | $ \begin{array}{l} 1^{st} B1 & \text{for mentioning "large samples" and "CLT"} \\ 2^{nd} dB1 & \text{dependent on } 1^{st} B1 \text{ for stating no need to assume normality (since CLT assures it) } \end{array} $                      |                             |  |  |  |  |  |  |  |  |

| Questic<br>Numbe | n Scheme                                                                                                                                                                                                                                                                                                                                    | Marks     |  |  |  |  |  |  |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|--|--|--|--|--|
| 3. (             | ) Label staff (from $1 - 16$ ) and children (from $1 - 40$ )<br>Use rendem numbers to select                                                                                                                                                                                                                                                | B1<br>P1  |  |  |  |  |  |  |
|                  | 4 staff and 10 children                                                                                                                                                                                                                                                                                                                     | B1<br>B1  |  |  |  |  |  |  |
| 0                | ) $\overline{x} = \hat{\mu} = 31.2142$ awrt <u>31.2</u>                                                                                                                                                                                                                                                                                     | (3)<br>B1 |  |  |  |  |  |  |
|                  | $s^2 = \frac{20983 - 14 \times 31.2}{13}$                                                                                                                                                                                                                                                                                                   | Alft      |  |  |  |  |  |  |
|                  | = 1026.33 awrt <u>1030</u>                                                                                                                                                                                                                                                                                                                  | A1        |  |  |  |  |  |  |
|                  |                                                                                                                                                                                                                                                                                                                                             | (4)       |  |  |  |  |  |  |
| (                | ) $\frac{\sqrt[n]{1026.33}}{\sqrt{14}}$ , = 8.562 awrt <u>8.56</u>                                                                                                                                                                                                                                                                          | M1, A1    |  |  |  |  |  |  |
| (                | ) The variation within each stratum is quite small (o.e.)                                                                                                                                                                                                                                                                                   | (2)<br>B1 |  |  |  |  |  |  |
|                  | <b>The difference in the means will be quite large</b> , (so variations from the                                                                                                                                                                                                                                                            | B1        |  |  |  |  |  |  |
|                  | overall mean will be large giving a larger overall s.e.)                                                                                                                                                                                                                                                                                    | (2)       |  |  |  |  |  |  |
|                  | Notos                                                                                                                                                                                                                                                                                                                                       | Total 11  |  |  |  |  |  |  |
| (;               | 1 <sup>st</sup> B1 for labelling\numbering\listing staff <u>and</u> children                                                                                                                                                                                                                                                                |           |  |  |  |  |  |  |
|                  | 2 <sup>nd</sup> B1 for use of random numbers or "randomly select" in <u>each group</u> (may be implied)                                                                                                                                                                                                                                     |           |  |  |  |  |  |  |
|                  | 3 <sup>rd</sup> B1 for selecting the correct number of staff <u>and</u> children                                                                                                                                                                                                                                                            |           |  |  |  |  |  |  |
|                  | e.g. randomly select 4 staff and 10 children scores 2 <sup>nd</sup> and 3 <sup>rd</sup> B marks since                                                                                                                                                                                                                                       |           |  |  |  |  |  |  |
|                  | randomly selecting and the "each group" is implied,                                                                                                                                                                                                                                                                                         |           |  |  |  |  |  |  |
| đ                | B1 for awrt 31.2<br>M1 for a correct expression ft their $\overline{x}$ and allow transcription error in $\sum x^2$ e.g. 29683<br>1 <sup>st</sup> A1ft for a fully correct expression ft their $\overline{x}$ only<br>2 <sup>nd</sup> A1 for awrt 1030                                                                                      |           |  |  |  |  |  |  |
| (                | ) M1 for attempting $\frac{\text{"their s"}}{\sqrt{14}}$ (must have 14)<br>A1 for awrt 8.56                                                                                                                                                                                                                                                 |           |  |  |  |  |  |  |
| ((               | <ul> <li>1<sup>st</sup> B1 for a suitable comment about variation (se) suggesting that variation (se) within strata is less than that overall</li> <li>2<sup>nd</sup> B1 for a suitable reason about means, pointing out that the individuals' weights will vary a lot from the overall mean and so overall s.e. will be higher.</li> </ul> |           |  |  |  |  |  |  |

| Question<br>Number | Scheme                                                                                                                                                            |                |  |  |  |  |  |  |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|--|--|--|--|--|
| <b>4.</b> (a)      | $H_0: \mu = 0.5$ $H_1: \mu \neq 0.5$                                                                                                                              |                |  |  |  |  |  |  |
|                    | (Significance level = $)10\%$                                                                                                                                     |                |  |  |  |  |  |  |
|                    | (0.5 is in the interval so not significant, accept H <sub>0</sub> , can accept) $\mu = 0.5$                                                                       |                |  |  |  |  |  |  |
|                    |                                                                                                                                                                   |                |  |  |  |  |  |  |
| <b>(b)</b>         | $1.6449 \times \frac{o}{100} = 0.0247$                                                                                                                            | MI<br>B1       |  |  |  |  |  |  |
|                    | $\sqrt{100}$ 10×0.0247                                                                                                                                            | DI             |  |  |  |  |  |  |
|                    | $\sigma = 0.15016 \text{ or } \frac{10 \times 0.0247}{1.6449}$ (awrt 0.15)                                                                                        | A1             |  |  |  |  |  |  |
|                    | $0.479 + 1.96 \times \sigma''$                                                                                                                                    | M1             |  |  |  |  |  |  |
|                    | $0.479 \pm 1.90 \land \frac{1}{\sqrt{150}}$                                                                                                                       | B1             |  |  |  |  |  |  |
|                    | awrt (0.455, 0.503)                                                                                                                                               | A1             |  |  |  |  |  |  |
|                    |                                                                                                                                                                   | (6)<br>Total 9 |  |  |  |  |  |  |
|                    | Notes                                                                                                                                                             | 10001 2        |  |  |  |  |  |  |
| (a)                | 1 <sup>st</sup> B1 for both hypotheses in terms of $\mu$ .                                                                                                        |                |  |  |  |  |  |  |
|                    | $2^{nd}$ dB1 for 10% but accept 5% if they have a one-tail test as H <sub>1</sub>                                                                                 |                |  |  |  |  |  |  |
|                    | 3 <sup>rd</sup> B1 for a correct comment leading to accepting H <sub>0</sub>                                                                                      |                |  |  |  |  |  |  |
|                    | Ignore any 'further calculations'.                                                                                                                                |                |  |  |  |  |  |  |
| <b>(b)</b>         | 1 <sup>st</sup> M1 for $z \frac{0}{\sqrt{100}} = k$ , using $n = 100$ and where $ z  > 1.5$ and $0.02 < k < 0.03$                                                 |                |  |  |  |  |  |  |
|                    | 1 <sup>st</sup> B1 for 1.6449 or better in an attempt (could be 1.6449 $\sigma = k$ or even 1.6449 $\sigma^2 = k$ )                                               |                |  |  |  |  |  |  |
|                    | 1 <sup>st</sup> A1 for a correct expression for $\sigma$ e.g. awrt 0.15                                                                                           |                |  |  |  |  |  |  |
|                    | 2 <sup>nd</sup> M1 for $\overline{x} \pm z \times \frac{\sigma}{\sqrt{150}}$ for any $z$ (>1) and ft their $\sigma$ and allow $\overline{x} \in (0.4633, 0.5127)$ |                |  |  |  |  |  |  |
|                    | Allow use of letter $\sigma$ without a value.                                                                                                                     |                |  |  |  |  |  |  |
|                    | $2^{nd}$ B1 for 1.96 or better in an attempt (could be 1.96 $\sigma$ or even 1.96 $\sigma^2$ )                                                                    |                |  |  |  |  |  |  |
|                    | $2^{na}$ A1 for awrt 0.455 and awrt 0.503                                                                                                                         |                |  |  |  |  |  |  |
|                    |                                                                                                                                                                   |                |  |  |  |  |  |  |

| Question<br>Number | Scheme                                                                                                                                                                                                           | Marks           |  |  |  |  |  |  |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--|--|--|--|--|--|
| 5 (i)              | Let $R = B_1 + B_2 + B_3 + B_4 + B_5 - 5H$ so $E(R) = -25$ (o.e.)                                                                                                                                                | B1              |  |  |  |  |  |  |
|                    | $Var(R) = 5 \times 6^2 + 5^2 \times 4^2$ $R \sim N(-25, \sqrt{580}^2)$                                                                                                                                           | M1A1            |  |  |  |  |  |  |
|                    | $P(R > 0) = P(Z > \frac{0 - 25}{\sqrt{580}}) = P(Z > 1.04), = 0.149619(calc) or 0.1492 (tables)$                                                                                                                 | dM1 A1          |  |  |  |  |  |  |
|                    |                                                                                                                                                                                                                  | (5)             |  |  |  |  |  |  |
| (ii)(a)            | $\mathbf{a} \mid \overline{X} \sim \mathbf{N}\left(\mu, \frac{\sigma^2}{5}\right)$                                                                                                                               |                 |  |  |  |  |  |  |
|                    | $\operatorname{Var}(D) = \sigma^2 + \left\  \frac{\sigma^2}{5} \right\  = \frac{6\sigma^2}{5},  \text{so} \qquad D \sim \operatorname{N}\left(0, \frac{6\sigma^2}{5}\right)$                                     | M1, A1 (3)      |  |  |  |  |  |  |
| (b)                | $P(Y_1 > \overline{X} + \sigma) = P(D > \sigma) = P\left(Z > \frac{\sigma}{\sqrt{\frac{6}{5}\sigma}}\right)$                                                                                                     | M1              |  |  |  |  |  |  |
|                    | = P(Z > 0.912) = 0.181(3  dp) (*)                                                                                                                                                                                | A1cso (2)       |  |  |  |  |  |  |
| (c)                | Since $U_1$ and $\overline{U}$ are not independent (so variance formula cannot be used)                                                                                                                          | B1              |  |  |  |  |  |  |
|                    | Can be implied e.g. $U_1$ used to calculate $\overline{U}$ , $U_1$ and $\overline{U}$ from same sample o.e.                                                                                                      | (1)             |  |  |  |  |  |  |
| (d)                | Let $F = U_1 - \overline{U} = U_1 - \frac{(U_1 + U_2 + U_3 + U_4 + U_5)}{5}, = \frac{4U_1 - (U_2 + U_3 + U_4 + U_5)}{5}$                                                                                         | M1, A1          |  |  |  |  |  |  |
|                    | Var(F) = $\frac{4^2 \sigma^2 + 4\sigma^2}{5^2} = 0.8 \sigma^2$ , so $F \sim N(0, 0.8 \sigma^2)$                                                                                                                  | dM1, A1         |  |  |  |  |  |  |
|                    | $P(F > \sigma) = P\left(Z > \frac{\sigma}{\sigma\sqrt{0.8}}\right) = P(Z > 1.118)$                                                                                                                               | M1              |  |  |  |  |  |  |
|                    | = 0.1314 (tables) or $0.131776$ (calc) <b>awrt 0.131~0.132</b>                                                                                                                                                   | Alcso           |  |  |  |  |  |  |
|                    |                                                                                                                                                                                                                  | (6)<br>Total 17 |  |  |  |  |  |  |
|                    | Notes                                                                                                                                                                                                            | 1000017         |  |  |  |  |  |  |
| (i)                | 1 <sup>st</sup> B1 for $E(R) = -25$ (or 25 if their R is defined the other way around)<br>1 <sup>st</sup> M1 for an attempt at $Var(R) = 5Var(R) + 25Var(U)$ . Condens assuming of $C^2$                         | $a = 1 + 1^2$   |  |  |  |  |  |  |
|                    | $1^{st}$ M1 for an attempt at Var(R) = 5Var(B) + 25Var(H). Condone swapping of $6^2$ and $4^2$<br>1 <sup>st</sup> A1 for normal and correct variance (ft their mean)                                             |                 |  |  |  |  |  |  |
|                    | $2^{nd} dM1$ for attempting the correct probability and standardising with their m                                                                                                                               | nean and sd.    |  |  |  |  |  |  |
|                    | It is mark is dependent on 1° M1 so if R is not being used or M0 for variat<br>If their method is not crystal clear then they must be attempting $P(Z > +$                                                       | ve value) o.e   |  |  |  |  |  |  |
|                    | $2^{nd}$ A1 for answer in the range [0.149, 0.150]                                                                                                                                                               | ,               |  |  |  |  |  |  |
| (ii)(a)            | B1 for correct distribution of $\overline{X}$ (may be implied for a correct answer for <i>D</i> )<br>M1 for correct attempt at Var( <i>D</i> ) (ft their Var( $\overline{X}$ )) [A1 needs must be fully correct] |                 |  |  |  |  |  |  |
| (ii)(b)            | M1 for expressing probability in terms of D and standardising<br>A1cso for seeing P( $Z > 0.912$ ) or prob of 1 – 0.8186 (tables) or 0.180655(6)                                                                 | calc)           |  |  |  |  |  |  |
| (c)                | B1 correct statement that should mention $U_1$ and $\overline{U}$                                                                                                                                                |                 |  |  |  |  |  |  |
| ( <b>d</b> )       | 1 <sup>st</sup> M1 for forming an expression in terms of $U_1U_5$ only                                                                                                                                           |                 |  |  |  |  |  |  |
|                    | 1 <sup>st</sup> A1 for collecting $U_1$ terms and getting in a form where $Var(aX \pm bY)$ can                                                                                                                   | be used.        |  |  |  |  |  |  |
|                    | $2^{na}$ dM1 for a correct expression for Var(their F). Dependent on $1^{st}$ M1.<br>$2^{nd}$ A1 for a correct distribution for F                                                                                |                 |  |  |  |  |  |  |
|                    | $3^{rd}$ M1 attempting a correct prob and standardising using their Var( <i>F</i> ), $\sigma$ must cancel                                                                                                        |                 |  |  |  |  |  |  |
|                    | 3 <sup>rd</sup> A1cso for awrt 0.131 or 0.132                                                                                                                                                                    |                 |  |  |  |  |  |  |

| Question     |                                                                              | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          |                           |                                                |                                        |              |              |  |  |  |
|--------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------|------------------------------------------------|----------------------------------------|--------------|--------------|--|--|--|
| 6. (a)       | $H_0: U[0,$                                                                  | B1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |                           |                                                |                                        |              |              |  |  |  |
|              | D                                                                            | $O_i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $E_i$                    | $\frac{(O_i - E_i)^2}{E}$ | $\frac{O_i^2}{F}$                              | Values of D                            | B1           |              |  |  |  |
|              | 0-4                                                                          | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40                       | $\frac{E_i}{8.1}$         | $\frac{L_i}{12.1}$                             | Expected Freq                          | M1A1         |              |  |  |  |
|              | 4 – 7                                                                        | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 30                       | 2.7                       | 50.7                                           | $4^{\text{th}}$ or $5^{\text{th}}$ col | M1           |              |  |  |  |
|              | 7 - 9                                                                        | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20                       | 1.25                      | 31.25                                          | $\chi^2 = 13.65$                       | A1           |              |  |  |  |
|              | y = 10                                                                       | $\frac{14}{2(1\%) - 11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 345                      | 1.0                       | 19.6                                           |                                        | <b>B1 B1</b> |              |  |  |  |
|              | $\begin{bmatrix} v - 3, & \chi_3 \\ \text{[Reject H]} \end{bmatrix}$         | $v = 5$ , $\chi_3(1\%) = 11.545$<br>[Paieet H ] the uniform distribution over [0, 10] is not a suitable model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |                           |                                                |                                        |              |              |  |  |  |
|              |                                                                              | [10] ( $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ , $10$ |                          |                           |                                                |                                        |              |              |  |  |  |
| (b)          | Area $\propto \pi R^2$                                                       | <sup>2</sup> so $r = 81$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | , – 49 = <u>32</u>       |                           |                                                |                                        | M1, A1       |              |  |  |  |
|              |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          | s = 100 - "3              | 32" – 49 <u>or</u> 1                           | 100 - 81 = 19                          | B1ft         | ( <b>2</b> ) |  |  |  |
| (c)          | Not signific                                                                 | ant. Henry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 's model is s            | uitable                   |                                                |                                        | M1. A1       | (3)          |  |  |  |
|              |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5 1110 001 10 5          |                           |                                                |                                        | ,            | (2)          |  |  |  |
| (d)          | $H_0$ : The col                                                              | our/region c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | hosen for the            | points is inde            | ependent of g                                  | gender(or no assoc')                   | B1           |              |  |  |  |
|              | $\mathbf{H}_1$ : The cold                                                    | our/region cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nosen for the            | points is depe            | endent on gei                                  | nder(or assoc')                        | <b>D</b> 1   |              |  |  |  |
|              | 30×65                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |                           |                                                |                                        |              | (1)          |  |  |  |
| (e)          | $\frac{39\times03}{100}$                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |                           |                                                |                                        | B1           |              |  |  |  |
|              | 100                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |                           |                                                |                                        |              | (1)          |  |  |  |
| ( <b>f</b> ) | (f) Expected frequency for Yellow and Boys is $4.9 < 5$ so col. must be      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |                           |                                                |                                        |              |              |  |  |  |
|              | pooled/combined.<br>[This gives a 2×3 table so $v = (2-1) \times (3-1) = 21$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |                           |                                                |                                        |              |              |  |  |  |
|              |                                                                              | $[2 m s g (s s u 2 n s u s s s (s - (2 - 1) \land (s - 1) - 2)]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          |                           |                                                |                                        |              |              |  |  |  |
| (g)          | cv = 4.605                                                                   | B1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |                           |                                                |                                        |              |              |  |  |  |
|              |                                                                              | Ы                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (2)                      |                           |                                                |                                        |              |              |  |  |  |
|              |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |                           |                                                |                                        |              |              |  |  |  |
|              | 2 <sup>nd</sup> B1 for                                                       | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |                           |                                                |                                        |              |              |  |  |  |
| (a)          | $1^{\text{st}} \text{M1}$ for                                                | at least 2 e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | xpected freq             | uencies or c              | lear use of a                                  | a correct formula e.g                  | g. 0.4N      |              |  |  |  |
|              | 1 <sup>st</sup> A1 for                                                       | all the corr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ect $E_i$                |                           | , th <b>≂</b> th                               |                                        |              |              |  |  |  |
|              | $2^{nd}$ M1 for $2^{nd}$ A1 for                                              | at least 2 c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | orrect calcu             | lations from              | $4^{\text{m}}$ or $5^{\text{m}}$ c<br>to 3 sf) | column                                 |              |              |  |  |  |
|              | Awr                                                                          | t 13.7 only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | scores 2 <sup>nd</sup> E | 81M1A1M1                  | A1                                             |                                        |              |              |  |  |  |
|              | 3 <sup>rd</sup> A1 for                                                       | a correct co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | onclusion rej            | ecting the u              | niform mod                                     | el. Award provided                     | their test   |              |  |  |  |
| (b)          | M1 for sor                                                                   | $suc > 11.5^2$<br>ne attempt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | to use $\pi R^2$ t       | to find $r$               |                                                |                                        |              |              |  |  |  |
|              |                                                                              | r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                           |                                                |                                        |              |              |  |  |  |
| (c)          | M1 for a c                                                                   | orrect state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ment that it             | is not signif             | icant                                          |                                        |              |              |  |  |  |
|              | B1 Indepen                                                                   | B1 Independence or association mentioned at least once if ditto marks used.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          |                           |                                                |                                        |              |              |  |  |  |
| (d)          | Allow conn                                                                   | Allow connection but not correlation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |                           |                                                |                                        |              |              |  |  |  |
| (f)          | BI for rec<br>$2^{nd}B1$ for c                                               | B1 for recognising there is an $Ei < 5$ and need for pooling/combining oe<br>2 <sup>nd</sup> B1 for correctly stating that Phoebe's belief is not supported by the data of (depends on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          |                           |                                                |                                        |              |              |  |  |  |
| (g)          | their cv bein                                                                | ng > 1.411)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | that I h                 |                           | i is not supp                                  |                                        | (uepenus     | , 011        |  |  |  |
|              |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |                           |                                                |                                        |              |              |  |  |  |

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom