Mark Scheme (Results)

Summer 2017

Pearson Edexcel GCE Further Mathematics
Statistics S3 (6691)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2017
Publications Code
All the material in this publication is copyright
© Pearson Education Ltd 2017

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- \square The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.

Question Number	Scheme	Notes	Marks
1(a)	-(accurate) estimates for each strata / job -more representative of the population -reflects population structure	Any 1 oe	B1
			(1)
(b)	Total staff=720	May be implied by calculations	B1
	$\text { Managers }=\frac{72}{720} \times 40=4$	For one correct calculation, follow through their 720 .	M1
	Drivers $=\frac{108}{720} \times 40=6$		
	$\text { Administrators }=\frac{180}{720} \times 40=10$		
	Warehouse $=\frac{360}{720} \times 40=20$	4, 6, 10, 20 only. Must identify which job the values relate to.	A1
			(3)
(c)	Label all managers 1 - 72 o.e.	Idea of sampling frame or list of managers. Need not give the specific term.	B1
	Using random numbers in range 1-72 or 0-71 select 4 (managers).	Use of random numbers to select required number of managers. Must mention use of random numbers or some random selection process. If they are describing systematic sampling score B0.	B1
			(2)
			Total 6

Question Number	Scheme	Notes	Marks
6.			
(a)	$\mathrm{H}_{0}: \mu_{\text {new }}-\mu_{\text {old }}=8$	Accept equivalent rearranged equation. Definitions of parameters must be clear e.g. use of 1 and 2 without definitions scores B0. Accept ' x ' for 'new' and ' y ' for 'old' as defined in the question.	B1
	$\mathrm{H}_{1}: \mu_{\text {new }}-\mu_{\text {old }}>8$	Accept equivalent rearranged strict inequality. Definitions of parameters must be clear e.g. use of 1 and 2 without definitions scores B0. Accept ' x ' for 'new' and ' y ' for 'old' as defined in the question.	B1
	$z=\frac{ \pm(83-74-8)}{\sqrt{\frac{7}{50}+\frac{6}{40}}}$	M1 for attempting standard error. Condone swapping 7 and 6. Accept 6.86 and 5.85 for 7 and 6.	M1
	$z=\frac{ \pm 1}{0.5385 \ldots}=1.86$	dM1 for 1/ "their standard error" A1 for awrt 1.86 NB -1.86 is A0. If 8 missing from H_{1} then accept $z=\frac{9}{0.5385 \ldots}=\operatorname{awrt} 16.7 \text { and }$ must be consistent with their H_{1}.	dM1A1
	cv $z=1.6449$	Accept \pm or probability of 0.9686	B1
	(1.86>1.6449) so reject H_{0}	(Or 0.95<0.9686)	
	Evidence to support engineer's claim (that the new battery will last more than 8 hours longer than the old battery).	Correct comment in context. Must mention "engineers claim" or "battery", "old", "new" and " 8 ".	A1cso
			(7)
(b)	Sample sizes are large		B1
	CLT guarantees sample means (\bar{X} and \bar{Y}) are approximately normally distributed.	Must mention means and normal. No assumptions are being made so B 0 if key to answer.	B1
			(2)
			Total 9

Question Number	Scheme	Notes	Marks
7(a)	$L \square \mathrm{~N}\left(1510,20^{2}\right)$ and $M \square \mathrm{~N}\left(520,10^{2}\right)$		
	$W=L-\left(M_{1}+M_{2}+M_{3}\right)$	Allow $L-(M+M+M)$ but not $L-3 M$ Can be implied by correct $\operatorname{Var}(W)$. May use $W=L-\left(M_{1}+M_{2}+M_{3}\right)-15 \text { for }$ B1.	B1
	$\mathrm{E}(W)=1510-3 \times 520=-50$	Accept 50 if definition reversed. Accept $\mathrm{E}(W)=1510-3 \times 520-15=-65$	B1
	$\operatorname{Var}(W)=20^{2}+10^{2}+10^{2}+10^{2}=700$	Attempt $\operatorname{Var}(W)=\operatorname{Var}(L)+3 \operatorname{Var}(M)$ Do not condone missing squares, cao.	M1,A1
	$\mathrm{P}(W>15) \quad=\mathrm{P}\left(Z>\frac{15--50}{\sqrt{700}}\right)$	Attempting the correct probability and standardising with their mean and sd dependent on 1st M1. If values for W is not being used or not their variance score M0. Must use 15. Accept $\mathrm{P}(W>0) \quad=\mathrm{P}\left(Z>\frac{0--65}{\sqrt{700}}\right)$	dM1
	$=\mathrm{P}(Z>2.456769 . .$.		
	$=0.0069$	0.0071 by calc. awrt 0.007	A1
			(6)
(b)	$X=3 M-L$	Can be implied by correct variance.	
	$\mathrm{E}(X)=3 \times 520-1510=50$	Accept -50 if reversed.	B1
	$\operatorname{Var}(X)=3^{2} \times 10^{2}+20^{2}=1300$	Attempt $\operatorname{Var}(W)=3^{2} \operatorname{Var}(M)+\operatorname{Var}(S)$ Do not condone missing squares, cao. Condone $10^{2}+3^{2} \times 20^{2}$ for M1A0.	M1,A1
	$\mathrm{P}(X>0)=\mathrm{P}\left(Z>\frac{-50}{\sqrt{1300}}\right)$	Attempting the correct probability and standardising with their mean and sd.	dM1
	$=\mathrm{P}(\mathrm{Z}>-1.38675 . .)=$.	0.9172 by calc. awrt 0.917-0.918	A1
			(5)
(c)	$\mathrm{P}($ all 5 bags weigh more than 520 grams $)=$ $=\left(\frac{1}{2}\right)^{5}=\frac{1}{32}=0.03125$	0.03125	B1

	$\begin{aligned} & \bar{M} \square \mathrm{~N}\left(520, \frac{10^{2}}{5}\right) \\ & \text { or } \sum_{i=1}^{5} M_{i} \sim \mathrm{~N}(2600,500) \end{aligned}$	Both mean and variance required in either case. Can be implied below.	B1
	$\begin{aligned} & \mathrm{P}(\bar{M}>d)=\mathrm{P}\left(Z>\frac{d-520}{\frac{10}{\sqrt{5}}}\right)=0.03125 \text { or } \\ & \mathrm{P}(T>5 d)=\mathrm{P}\left(Z>\frac{5 d-2600}{\sqrt{500}}\right)=0.03125 \end{aligned}$	Standardise using $d, 520$ and 10 or $5 \mathrm{~d}, 2600$ and $\sqrt{500}$.	M1
	$\begin{aligned} & \Rightarrow \frac{d-520}{\frac{10}{\sqrt{5}}}=1.86(27 \ldots) \\ & \text { or } \frac{5 d-2600}{\sqrt{500}}=1.86(27 \ldots) \end{aligned}$	Equate to z value	M1
	$d=528.3$	awrt 528.3	A1
			(5)
ALT (c)	Accept use d as difference to 520 provided 520	dded to final answer:	
	$\mathrm{P}($ all 5 bags weigh more than 520 grams $)=$ $=\left(\frac{1}{2}\right)^{5}=\frac{1}{32}=0.03125$	0.03125	B1
	$\begin{aligned} & \bar{M} \square \mathrm{~N}\left(0, \frac{10^{2}}{5}\right) \\ & \text { or } \sum_{i=1}^{5} M_{i} \sim \mathrm{~N}(0,500) \end{aligned}$	Both mean and variance required in either case. Can be implied below.	B1
	$\begin{aligned} & \mathrm{P}(\bar{M}>d)=\mathrm{P}\left(Z>\frac{d}{\frac{10}{\sqrt{5}}}\right)=0.03125 \text { or } \\ & \mathrm{P}(T>5 d)=\mathrm{P}\left(Z>\frac{5 d}{\sqrt{500}}\right)=0.03125 \end{aligned}$	Standardise using d and 10 or $5 d$ and $\sqrt{500}$.	M1
	$\begin{aligned} & \Rightarrow \frac{d}{\frac{10}{\sqrt{5}}}=1.86(27 \ldots) \\ & \text { or } \frac{5 d}{\sqrt{500}}=1.86(27 \ldots) \end{aligned}$	Equate to z value	M1
	$d=520+8.3=528.3$	awrt 528.3	A1
			(5)
			Total 16

Pearson Education Limited. Registered company number 872828
with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

