

Mark Scheme (Results)

Summer 2018

Pearson Edexcel GCE Further Mathematics Statistics S3 Paper 6691_01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2018
Publications Code 6691_01_1806_MS
All the material in this publication is copyright
© Pearson Education Ltd 2018

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- •All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer

Question Number	Scheme								Marks	S			
1. (a)	$r = \frac{S_{ca}}{\sqrt{S_{cc}S_{aa}}} = \frac{47.7625}{\sqrt{34787.5 \times 0.217287}} = 0.549361$									B1			
(b)	$H_0: \rho = 0, H_1: \rho > 0$ (0.549 <)0.6215 (Not significant Insufficient evidence to reject H_0) Insufficient evidence of a positive correlation between the concentration of a radioactive element and the amount of dissolved solids in groundwater.								B1 B1 B1ft	(1)			
	Sample	A	В	C	D	E	F	G	Н				
	С	2	6	4	3	7	1	8	5				
	а	4	5	1	3	8	2	6	7			M1	
(c)	d	-2	1	3	0	-1	-1	2	-2				
	d^2	4	1	9	0	1	1	4	4	24		M1A1	
	Note Reverse ranks $\sum d^2 = 144$ $6\sum d^2 \qquad 6 \times 24 \qquad 6 \times 140$									M1A1			
(d)	$r_s = 1 - \frac{6\sum d^2}{n(n^2 - 1)} = 1 - \frac{6\times 24}{8(64 - 1)} = 0.71428$ $H_0: \rho_s = 0, H_1: \rho_s > 0$ $(0.714 >) 0.6429 \text{ (Significant. Reject } H_0\text{)}$ Evidence of a positive correlation between the concentration of a radioactive element and the amount of dissolved solids in groundwater.								B1 B1 B1ft	(5)			
(e)	Results of tests suggest (monotonic) non-linear relationship or assumptions for PMCC breached i.e. not (joint) normal .										B1 Total 13	(1)	
						Notes						1000110	
(a) (b)	1^{st} B1 awrt 0.549 1^{st} B1 Both correct. Require population parameter ρ and one tailed test. 2^{nd} B1 cv 0.6215												
(c)	3 rd B1 Context required. Must mention concentration of a radioactive element and amount of dissolved solids 1 st M1 for an attempt to rank the concentration of a radioactive element and the amount of dissolved solids with at least 4 correct for each variable. Allow reverse ranks. 2 nd M1 for attempt at d ² row 1 st A1 all correct								ids				
(d)	$3^{\rm rd}$ M1 for use of the correct formula and an attempt to rank, follow through their $\sum d^2$ if clearly stated If answer is not correct, a correct expression is required. At awrt 0.714 $1^{\rm st}$ B1 for both hypotheses in terms of ρ , one tail H_1 . Allow use of ρ_s . Alternative hypothesis compatible with their ranking. $2^{\rm nd}$ B1 for cv of 0.6429 $3^{\rm rd}$ B1ft for a correct contextualised comment. Must mention concentration of a radioactive element and the amount of dissolved solids. Follow through their r_s and their cv (provided it is $ cv < 1$)												
(e)	Don't insist B1 for ' nor	t on the	word "p	ositive"	for a one			na uicii	ev (pi	OVIGEO	. it is CV <1)		

Question Number	Scheme	Marks						
2. (a)	Record / List all ticket numbers of standard and premium tickets	B1						
	Use random numbers to select a sample of standard and a sample of premium ticket holders	B1						
	i.e. within strata. Sample sizes in proportion to the no of standard and no of premium ticket holders at the							
	concert.	B1						
		(.						
(b)	$H_0: \mu_p - \mu_s = 6$ oe [$p = \text{premium } s = \text{standard}$]	B1						
. ,		B1						
	μ_1 , μ_p , $\mu_s > 0$	ы						
	H ₁ : $\mu_p - \mu_s > 6$ oe Standard error = $\sqrt{\frac{10^2}{60} + \frac{8^2}{55}} = \left[\sqrt{2.83030}\right] = [1.682]$	M1						
	$\pm (23-15-6)$							
	$z = \frac{\pm (23 - 13 - 6)}{\sqrt{\frac{10^2}{60} + \frac{8^2}{55}}}$	dM1						
	$\sqrt{\frac{5}{60} + \frac{5}{55}}$ "							
	$= \pm 1.1888$ awrt ± 1.19	A1						
	cv 5% one tailed = 1.6449	B1						
	Not significant, insufficient evidence to reject H ₀	dM1						
	Insufficient evidence to support the manager's claim	A1cso						
	or the mean value of merchandise sold to premium ticket holders is NOT more than £6 greater							
	than the mean value of merchandise sold to standard ticket holders.							
(c)	Sample size is large so Central Limit Theorem (CLT) applies so	B1						
(C)	do not need to assume merchandise sold has a normal distribution.	dB1						
		(2						
		Total 13						
	Notes							
(a)	1st B1 Sampling frame in context. Accept list of all standard and premium ticket holders at the c	concert.						
	2 nd B1 Use of random selection eg simple random sampling within strata							
	3^{rd} B1 Accept description of n_s , n_p .							
(b)	1 st & 2 nd B1 for hypotheses. Accept μ_1, μ_2 or μ_A, μ_B etc if it is clear which is which.							
	1 st M1 for an attempt at se with 3 out of 4 values correct.							
	$10^2 \text{ or } 8^2 - 8^2 \text{ or } 10^2$							
	Condone switching 10 and 8: $\sqrt{\frac{10^2 \text{ or } 8^2}{60} + \frac{8^2 \text{ or } 10^2}{55}}$							
	γ 60 55 2 nd dM1 dependent on 1 st M1 for a correct numerator (must have - 6) and ft their se.							
	1st A1 for awrt 1.19							
	3^{rd} B1 for \pm 1.6449 seen or probability of awrt 0.117, Sign must match their test statistic.							
	3 rd dM1 dep. on 1 st M1 for a correct statement based on their normal cv and their test statistic. Ignore their							
	5 dwi dep. on 1 wit for a correct statement based on their normal cv and their test statistic	hypotheses. Allow accept H ₀ but reject H ₁ is M0. Can be implied by correct conclusion.						
	hypotheses. Allow accept H ₀ but reject H ₁ is M0. Can be implied by correct conclusion.							
	hypotheses. Allow accept H_0 but reject H_1 is $M0$. Can be implied by correct conclusion. 2^{nd} A1cso for correct comment in context dependent upon all other marks being awarded.							
	hypotheses. Allow accept H ₀ but reject H ₁ is M0. Can be implied by correct conclusion. 2 nd A1cso for correct comment in context dependent upon all other marks being awarded. Must mention merchandise, standard and premium ticket holders and 6 or manager and belief	or claim						
	hypotheses. Allow accept H_0 but reject H_1 is $M0$. Can be implied by correct conclusion. 2^{nd} A1cso for correct comment in context dependent upon all other marks being awarded. Must mention merchandise, standard and premium ticket holders and 6 or manager and belief NB Use of cv for difference in means D will have $D = 6 + 1.6449 \times \text{s.e.} = \text{awrt } 8.33$ and	or claim						
(e)	hypotheses. Allow accept H ₀ but reject H ₁ is M0. Can be implied by correct conclusion. 2 nd A1cso for correct comment in context dependent upon all other marks being awarded. Must mention merchandise, standard and premium ticket holders and 6 or manager and belief NB Use of cv for difference in means D will have D = 6 + 1.6449 × s.e. = awrt 8.33 and requires sight of d = 8 with a comment for the 3 rd M1	or claim						
(c)	hypotheses. Allow accept H_0 but reject H_1 is $M0$. Can be implied by correct conclusion. 2^{nd} A1cso for correct comment in context dependent upon all other marks being awarded. Must mention merchandise, standard and premium ticket holders and 6 or manager and belief NB Use of cv for difference in means D will have $D = 6 + 1.6449 \times \text{s.e.} = \text{awrt } 8.33$ and							

Question Number	Scheme		Marks
3. (a)	$\overline{x} = \hat{\mu} = 1.55$ cao	1.55	B1
	$\sum x^{2} = 9.78, "\sum x^{2}" > 9.61, "\sum x^{2}" \neq (\sum x)^{2} = 38.44$	0.057	M1A1ftA1
	Or $s^2 = \frac{0.25^2 + 0.15^2 + 0.15^2 + 0.25^2}{3} = \frac{17}{300}$		(4)
(b)	$P(\mu - \hat{\mu} < 0.1) = 0.99$		
	$P(\mu - \hat{\mu} < 0.1) = 0.99$ $\frac{0.1}{0.5} = 2.5758$ awrt	2.576	M1B1A1ft
	$n = \left(\frac{2.5758 \times 0.5}{0.1}\right)^2 (= 12.879^2 = 165.8)$		dM1A1ft
	Sample size $(n \ge) 166$		A1 cso
			(6) Total 10
	Notes		
(a)	1 st B1 1.55 correct answer only		
	1^{st} M1 for a correct expression ft their \overline{x}		
	1^{st} A1ft for a fully correct expression ft their \overline{x} only		
	2 nd A1 accept awrt 0.057		
(b)	1 st M1 $\frac{0.1}{\frac{\text{their } s}{\sqrt{r}}} = z$ value. Accept with an inequality in any direction.		
	1 st B1 2.5758		
	1 st A1ft for any equivalent form. Allow ft of $z = 2.326$ or awrt 3.090. Must	use 0.5	
	2^{nd} dM1 for attempt to solve for <i>n</i> dependent on 1^{st} M leading to $n=$		
	$2^{\text{nd}} \text{ A1 for } \left(\frac{2.5758 \times 0.5}{0.1}\right)^2 \text{ Allow ft for } 135.2 \text{ or } 238.7$		
	3 rd A1 for 166 cao		ļ

Question Number	Scheme						
4. (a)	$2 \times 2.5758 \times \frac{\sigma}{\sqrt{120}} = 0.47027\sigma$						
(b)	$H_0: \mu = 6$ $H_1: \mu \neq 6$ (Significance level =)10% (6 is in the interval so not significant, do not reject H_0) $\mu = 6$	(3) B1 B1 B1					
(e)	$1.6449 \times \frac{\sigma}{\sqrt{100}} = (6.25 - 5.14) / 2 (= 0.555)$ $\sigma = 3.374$	(3) M1B1 A1					
		(3) Total 9					
	Notes						
(a)	1st M1 Use of $2z \frac{\sigma}{\sqrt{n}}$ with $z > 2$						
(b)	2 nd B1 10% 3 rd B1 Correct comment leading to accepting H ₀						
(c)	1st M1 for $z = 0.555$ oe, using $n = 100$ and where $ z > 1.5$ 1st B1 for 1.6449 or better in an attempt (could be 1.6449 $\sigma = c$ or even 1.6449 $\sigma^2 = c$)						
	1 st A1 awrt 3.37. Allow awrt 3.38 from use of $z = 1.64$						

Number	Marks
5 (a) (Let $W =)L - 3C$	B1
$E(W) = 2800 - 3 \times 1000 = -200$	B1
$Var(W) = 650^2 + 3^2 \times 250^2 = 985000$	M1A1
$P(W>0) = P(Z > \frac{200}{\sqrt{985000}}) = P(Z > 0.20157), = 0.42015 \text{ (calc) } \underline{\text{or}} 0.4207 ($	tables) dM1 A1
	(6)
(b) $(F = C_1 + C_2 + + C_8 + L_1 + L_2 + L_3)$	
E(F) = 16400	B1
$Var(F) = 8 \times 250^2 + 3 \times 650^2 = 1767500$	M1A1
$P(F > 20\ 000) = P(Z > \frac{20000 - 16400}{\sqrt{1767500}}) = P(Z > 2.7078), = 0.003386(calc) \underline{o}$	or 0.0035 dM1,A1
(tables) or 0.0034 (interpolation)	(5)
(c) Assume selection of cars and lorries is random.	B1 (5)
Weights of cars and lorries are independent.	(1)
	Total 12
Notes	
(a) 1^{st} B1 for forming a suitable variable. May be implied by correct variance. 2^{nd} B1 for -200 cao or 200 if their $W = 3C - L$	
1 st M1 for attempting $Var(W) = Var(L) + 3^2 \times Var(C)$. Condone swapping L 1 st A1 for 985 000 cao	and C .
2 nd M1 dependent upon first M1 for standardising with their –200 and their 9	985000
2 nd A1 awrt 0.420-0.421	
(b) 1st B1 for 16400 cao	
1st M1 for attempting $Var(F) = 8 \times Var(C) + 3 \times Var(L)$ 1st A1 for 1 767 500 cao	
2 nd M1 dependent upon first M1 for standardising with their 16400 and their	1767500
2 nd A1 awrt 0.003-0.004	
(c) Either random selection or independent weights	

Question Number		Mar	Marks					
6(a)	H_0 : B(4, 0.5)	B1						
	Even number count	O_i	E_{i}	$\frac{(O_i - E_i)^2}{E_i}$	$\frac{{O_i}^2}{E_i}$			
	0	12	9.375	0.735	15.36			
	1	45	37.5	1.5	54			
	3	36 39	56.25 37.5	7.29 0.06	23.04 40.56			
	4	18	9.375	7.935	34.56			
	$E_i = 150 \times P($	X = i)				M1A1		
	$\chi^2 = \sum \frac{(O_i - E_i)^2}{E_i}$ or $\chi^2 = \sum \frac{O_i^2}{E_i} - N$							
	$\chi^2 = 17.52$ or	A1						
	$v=4, \qquad \chi_4^2$	B1, B11	ît					
	(Reject H_0 ,) I	B(4,0.5) is no	ot a suitable me	odel or David'	s claim incorrect.	A1		
	v						(9)	
(b)	$\hat{p} = \frac{0 \times 12 + 1}{}$	$\times 45 + 2 \times 3$	$6+3\times39+4$	$\frac{\times 18}{} = 0.51$		M1 A1		
	Γ	4×15	50				(2)	
(2)	1 150 6	0.512 0.40	2 56.20500	0	.560	M1 A1	(2)	
(c)	$d = 150 \times 6 \times 6$ e = 150 - (8.6)				awrt 56.2 awrt 10.1 or 10.2	M1, A1		
	or $e = 150 \times (0.00)$		*	— 10.1 44 551	awit 10.1 of 10.2	B1ft	(3)	
(4)				m) is mot a swi	itable model	D1	(3)	
(d)	\mathbf{H}_0 : B(4, p) is	a suitable iii	odei II ₁ : b (4	, p) is not a sur	nable model	B1	(1)	
(e)	$v=3, \qquad \chi_3^2$	1%) = 11.34	15			B1B1ft	(1)	
	(16.9>11.345)							
	Binomial is not a suitable model or John's claim incorrect or equivalent contextualised statement that rejects the Binomial model.						(2)	
						Total 1	8 (3)	
(a)	1st B1 Accept '	Rinomial wi	th $p = 0.5$, re	Notes) 5)'			
(a)	•		•					
	1st M1 for attempt at $E_i = 150 \times P(X = i)$ with at least 2 values correct. 1st A1 at least 4 E_i correct to 3sf cao. Condone truncation.							
	2^{nd} M1 at least 2 correct to 3st cao. Condone truncation. 2^{nd} M1 for at least 2 correct calculations from 4^{th} or 5^{th} column.							
	2nd A1 at least 3 rd A1 for a to 4 th A1 for coor Award provide							
(b)	$\sum_{E_{i}}$							
	1st A1 for 0.51	cao						
(c)	$1^{\text{st}} \text{ M1 } d = 150$	$0 \times 6 \times (\text{their })$	$(\hat{p})^2 \times (1 - \text{their})$	$(\hat{p})^2$				
	1st A1 awrt 56.	2						
	1st B1ft awrt 10							
(d)		o .			nomial is not a suitable r	nodel		
(e)	$1^{\text{st}} B1 \ \nu = 3, 3^{\text{rd}} B1 \text{ Correct}$			igh their $V \neq t$	heir value in part (a)			