RECOGNISING ACHIEVEMENT

ADVANCED SUBSIDIARY GCE

Core Mathematics 2
WEDNESDAY 9 JANUARY 2008

Additional materials: Answer Booklet (8 pages) List of Formulae (MF1)

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72 .
- You are reminded of the need for clear presentation in your answers.

The diagram shows a sector $A O B$ of a circle with centre O and radius 11 cm . The angle $A O B$ is 0.7 radians. Find the area of the segment shaded in the diagram.

2 Use the trapezium rule, with 3 strips each of width 2, to estimate the value of

$$
\begin{equation*}
\int_{1}^{7} \sqrt{x^{2}+3} \mathrm{~d} x \tag{4}
\end{equation*}
$$

3 Express each of the following as a single logarithm:
(i) $\log _{a} 2+\log _{a} 3$,
(ii) $2 \log _{10} x-3 \log _{10} y$.

4

In the diagram, angle $B D C=50^{\circ}$ and angle $B C D=62^{\circ}$. It is given that $A B=10 \mathrm{~cm}, A D=20 \mathrm{~cm}$ and $B C=16 \mathrm{~cm}$.
(i) Find the length of $B D$.
(ii) Find angle $B A D$.

5 The gradient of a curve is given by $\frac{\mathrm{d} y}{\mathrm{~d} x}=12 \sqrt{x}$. The curve passes through the point $(4,50)$. Find the equation of the curve.

6 A sequence of terms $u_{1}, u_{2}, u_{3}, \ldots$ is defined by

$$
u_{n}=2 n+5, \quad \text { for } n \geqslant 1
$$

(i) Write down the values of u_{1}, u_{2} and u_{3}.
(ii) State what type of sequence it is.
(iii) Given that $\sum_{n=1}^{N} u_{n}=2200$, find the value of N.

The diagram shows part of the curve $y=x^{2}-3 x$ and the line $x=5$.
(i) Explain why $\int_{0}^{5}\left(x^{2}-3 x\right) d x$ does not give the total area of the regions shaded in the diagram.
(ii) Use integration to find the exact total area of the shaded regions.

8 The first term of a geometric progression is 10 and the common ratio is 0.8 .
(i) Find the fourth term.
(ii) Find the sum of the first 20 terms, giving your answer correct to 3 significant figures.
(iii) The sum of the first N terms is denoted by S_{N}, and the sum to infinity is denoted by S_{∞}.

Show that the inequality $S_{\infty}-S_{N}<0.01$ can be written as

$$
0.8^{N}<0.0002
$$

and use logarithms to find the smallest possible value of N.

9 (i)

Fig. 1

Fig. 1 shows the curve $y=2 \sin x$ for values of x such that $-180^{\circ} \leqslant x \leqslant 180^{\circ}$. State the coordinates of the maximum and minimum points on this part of the curve.
(ii)

Fig. 2

Fig. 2 shows the curve $y=2 \sin x$ and the line $y=k$. The smallest positive solution of the equation $2 \sin x=k$ is denoted by α. State, in terms of α, and in the range $-180^{\circ} \leqslant x \leqslant 180^{\circ}$,
(a) another solution of the equation $2 \sin x=k$,
(b) one solution of the equation $2 \sin x=-k$.
(iii) Find the x-coordinates of the points where the curve $y=2 \sin x$ intersects the curve $y=2-3 \cos ^{2} x$, for values of x such that $-180^{\circ} \leqslant x \leqslant 180^{\circ}$.

10 (i) Find the binomial expansion of $(2 x+5)^{4}$, simplifying the terms.
(ii) Hence show that $(2 x+5)^{4}-(2 x-5)^{4}$ can be written as

$$
320 x^{3}+k x,
$$

where the value of the constant k is to be stated.
(iii) Verify that $x=2$ is a root of the equation

$$
(2 x+5)^{4}-(2 x-5)^{4}=3680 x-800
$$

and find the other possible values of x.

