ADVANCED SUBSIDIARY GCE MATHEMATICS

Other Materials Required: None

Duration: 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name clearly in capital letters, your Centre Number and Candidate Number in the spaces provided on the Answer Booklet.
- Use black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure that you know what you have to do before starting your answer.
- Answer all the questions.
- Do not write in the bar codes.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You are reminded of the need for clear presentation in your answers.
- The total number of marks for this paper is 72.
- This document consists of 4 pages. Any blank pages are indicated.

1 (i) Show that the equation

$$
2 \sin ^{2} x=5 \cos x-1
$$

can be expressed in the form

$$
2 \cos ^{2} x+5 \cos x-3=0
$$

(ii) Hence solve the equation

$$
\begin{equation*}
2 \sin ^{2} x=5 \cos x-1, \tag{4}
\end{equation*}
$$

giving all values of x between 0° and 360°.

2 The gradient of a curve is given by $\frac{\mathrm{d} y}{\mathrm{~d} x}=6 x-4$. The curve passes through the distinct points $(2,5)$ and ($p, 5$).
(i) Find the equation of the curve.
(ii) Find the value of p.

3 (i) Find and simplify the first four terms in the expansion of $(2-x)^{7}$ in ascending powers of x.
(ii) Hence find the coefficient of w^{6} in the expansion of $\left(2-\frac{1}{4} w^{2}\right)^{7}$.

4 (i) Use the trapezium rule, with 4 strips each of width 0.5 , to find an approximate value for

$$
\int_{3}^{5} \log _{10}(2+x) \mathrm{d} x
$$

giving your answer correct to 3 significant figures.
(ii) Use your answer to part (i) to deduce an approximate value for $\int_{3}^{5} \log _{10} \sqrt{2+x} \mathrm{~d} x$, showing your method clearly.

The diagram shows parts of the curves $y=x^{2}+1$ and $y=11-\frac{9}{x^{2}}$, which intersect at $(1,2)$ and $(3,10)$. Use integration to find the exact area of the shaded region enclosed between the two curves.

6 The cubic polynomial $\mathrm{f}(x)$ is given by

$$
\mathrm{f}(x)=2 x^{3}+a x^{2}+b x+15
$$

where a and b are constants. It is given that $(x+3)$ is a factor of $\mathrm{f}(x)$ and that, when $\mathrm{f}(x)$ is divided by $(x-2)$, the remainder is 35 .
(i) Find the values of a and b.
(ii) Using these values of a and b, divide $\mathrm{f}(x)$ by $(x+3)$.

7

The diagram shows triangle $A B C$, with $A B=10 \mathrm{~cm}, B C=13 \mathrm{~cm}$ and $C A=14 \mathrm{~cm} . E$ and F are points on $A B$ and $A C$ respectively such that $A E=A F=4 \mathrm{~cm}$. The sector $A E F$ of a circle with centre A is removed to leave the shaded region $E B C F$.
(i) Show that angle $C A B$ is 1.10 radians, correct to 3 significant figures.
(ii) Find the perimeter of the shaded region $E B C F$.
(iii) Find the area of the shaded region $E B C F$.

8 A sequence $u_{1}, u_{2}, u_{3}, \ldots$ is defined by

$$
u_{1}=8 \quad \text { and } \quad u_{n+1}=u_{n}+3
$$

(i) Show that $u_{5}=20$.
(ii) The nth term of the sequence can be written in the form $u_{n}=p n+q$. State the values of p and q.
(iii) State what type of sequence it is.
(iv) Find the value of N such that $\sum_{n=1}^{2 N} u_{n}-\sum_{n=1}^{N} u_{n}=1256$.

9 (i) Sketch the curve $y=6 \times 5^{x}$, stating the coordinates of any points of intersection with the axes.
(ii) The point P on the curve $y=9^{x}$ has y-coordinate equal to 150 . Use logarithms to find the x-coordinate of P, correct to 3 significant figures.
(iii) The curves $y=6 \times 5^{x}$ and $y=9^{x}$ intersect at the point Q. Show that the x-coordinate of Q can be written as $x=\frac{1+\log _{3} 2}{2-\log _{3} 5}$.

$O C R^{\text {牙 }}$
 RECOGNISING ACHIEVEMENT

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations, is given to all schools that receive assessment material and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.
If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity. For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1GE.
OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

