GCE

Mathematics

Advanced Subsidiary GCE

Unit 4721: Core Mathematics 1

Mark Scheme for January 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2011
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

\begin{tabular}{|c|c|c|c|c|c|}
\hline 4 \& \begin{tabular}{l}
\[
u^{2}-5 u+4=0
\]
\[
(u-1)(u-4)=0
\] \\
\(u=1\) or \(u=4\) \\
\(3 x-2= \pm 1\) or \(3 x-2= \pm 2\) \\
\(x=1\) or \(\frac{1}{3}\) or \(\frac{4}{3}\) or 0
\end{tabular} \& M1 \({ }^{*}\)

DM1
A1
M1

A1

A1 \& \[
$$
\begin{aligned}
& 6 \\
& 6
\end{aligned}
$$

\] \& | Use the given substitution to obtain a quadratic or factorise into 2 brackets each containing $(3 x-2)^{2}$ |
| :--- |
| Correct method to solve a quadratic |
| Correct values for u |
| Attempt to square root and rearrange to obtain x OR to expand, rearrange and solve quadratic (at least one) 2 correct values |
| All 4 correct values $\left(\frac{0}{3}=A 0\right)$ | \& | No marks if evidence of "square rooting" e.g. $"(3 x-2)^{2}-5(3 x-2)+2($ or 4$)=0 "$ |
| :--- |
| No marks if straight to quadratic formula to get $\mathrm{x}=" 1$ " $\mathrm{x}=$ " 4 " and no further working |
| SR 1) If M0 Spotted solutions www B1 each Justifies 4 solutions exactly B2 |
| SR 2) If first 3 marks awarded, spotted solutions |
| 2 correct B1 |
| Other 2 correct B1 |
| Justifies 4 solutions exactly B1 |
| Alternative scheme for candidates who multiply out: |
| Attempt to expand $(3 x-2)^{4}$ and $(3 x-2)^{2} \quad$ M1 $81 x^{4}-216 x^{3}+171 x^{2}-36 x=0 \mathbf{A 1}$ |
| $x=0$ a solution or x a factor of the quartic A1 |
| Attempt to use factor theorem to factorise their cubic M1* |
| Correct method to solve quadratic DM1 |
| All 4 solutions correct A1 |

\hline 5 (i) \& \& M1

A1 \& 2 \& | Negative cubic through $(0,0)$ (may have max and min) |
| :--- |
| Must have reasonable rotational symmetry. Cannot be a finite "plot". Allow negative gradient at origin. Correct curvature at both ends. | \& Must be continuous. Allow slight curve towards or away from y-axis at one end, but not both.

\hline (ii) \& $y=-(x-3)^{3}$ \& M1
A1 \& 2 \& $\pm(x-3)^{3}$ seen or $y=(3-x)^{3}$ \& Must have " $y=$ " for A mark SR $y=-(x-3)^{2} \mathbf{B 1}$

\hline (iii) \& Stretch scale factor 5 parallel to y-axis \& \[
$$
\begin{aligned}
& \hline \text { B1 } \\
& \text { B1 }
\end{aligned}
$$

\] \& $\underline{6}$ \& o.e. e.g. scale factor $\frac{1}{\sqrt[3]{5}}$ parallel to the x axis. \& | Allow "factor" for "scale factor" |
| :--- |
| For "parallel to the y axis" allow "vertically", "in the y direction". Do not accept "in/on/across/up/along the y axis" |

\hline
\end{tabular}

6 (i) $\begin{aligned} & y=5 x^{-2}-\frac{1}{4} x^{-1}+x \\ & \frac{d y}{d x}=-10 x^{-3}+\frac{1}{4} x^{-2}+1 \end{aligned}$	M1 A1 A1 A1	4	x^{-2} used for $\frac{1}{x^{2}} \mathbf{O R} x^{-1}$ used for $\frac{1}{x}$ soi, OR x correctly differentiated $k x^{-3}$ or $k x^{-2}$ from differentiating Two fully correct terms Completely correct	Look out for: $y=5 x^{-2}-4 x^{-1}+x$ followed by $\frac{d y}{d x}=-10 x^{-3}+4 x^{-2}+1$ and then the correct answer. This is M1 A1 A1 A0 $4 x^{-1}$ is NOT a misread
(ii) $\frac{d^{2} y}{d x^{2}}=30 x^{-4}-\frac{1}{2} x^{-3}$	M1		Attempt to differentiate their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ (one term correctly differentiated)	Allow a sign slip in coefficient for M mark
	A1	$\underline{6}$	Completely correct	NB Only penalise "+ c" first time seen in the question

7 (i)	$\begin{aligned} & 4\left(x^{2}+3 x\right)-3 \\ & =4\left[\left(x+\frac{3}{2}\right)^{2}-\frac{9}{4}\right]-3 \\ & =4\left(x+\frac{3}{2}\right)^{2}-12 \end{aligned}$	B1 B1 M1 A1		$\begin{aligned} & p=4 \\ & q=\frac{3}{2} \\ & r=-3-4 q^{2} \text { or } r=-\frac{3}{4}-q^{2} \\ & r=-12(\text { from } q= \pm 1.5) \end{aligned}$	If p, q, r found correctly, then ISW slips in format. $\begin{aligned} & 4(x+1.5)^{2}+12 \quad \text { B1 B1 M0 A0 } \\ & 4(x+1.5)-12 \quad \text { B1 B1 M1 A1 (BOD) } \\ & 4(x+1.5 x)^{2}-12 \quad \text { B1 B0 M1 A0 } \\ & 4\left(x^{2}+1.5\right)^{2}-12 \quad \text { B1 B0 M1 A0 } \\ & 4(x-1.5)^{2}-12 \quad \text { B1 B0 M1 A1 } \\ & 4 x(x+1.5)^{2}-12 \text { B0 B1M1A1 } \end{aligned}$
(ii)	$\underline{-12 \pm \sqrt{12^{2}-4 \times 4 \times-3}}$	M1		Correct method to solve quadratic	
	$\begin{array}{r} 2 \times 4 \\ =\frac{-12 \pm \sqrt{192}}{8} \end{array}$	A1		$\frac{-12 \pm \sqrt{192}}{8} \text { or } \frac{-3 \pm \sqrt{12}}{2}$	
	$=\frac{-12 \pm 8 \sqrt{3}}{8}$	B1		$\sqrt{192}=8 \sqrt{ } 3$ or $\sqrt{ } 12=2 \sqrt{ } 3$ from correct $b^{2}-4 \mathrm{ac}$	
	$=-\frac{3}{2} \pm \sqrt{3}$ OR:	A1		$\frac{-3 \pm 2 \sqrt{3}}{2} \text { or }-\frac{12}{8} \pm \sqrt{3},-\frac{6}{4} \pm \sqrt{3}$	
	$4\left(x+\frac{3}{2}\right)^{2}-12=0$				
	$x+\frac{3}{2}= \pm \sqrt{3}$	$\begin{aligned} & \text { M1 } \\ & \text { A1ft } \end{aligned}$		Must have \pm for method mark $x+1.5$ ft $x+q$ from part(i) www in LHS in part (ii) $\pm \sqrt{ } 3$	Not for $2(x+q)=\ldots$
	$x=-\frac{3}{2} \pm \sqrt{3}$	A1			
		A1	4	Do not ISW	SR One correct root www B1
(iii)	$12^{2}-4 \times 4 \times(-k)=0$	M1		Attempts $b^{2}-4 a c=0$ or $\sqrt{b^{2}-4 a c}=0$ involving k. If $b^{2}-4 a c$ not quoted then expression must be correct.	Other alternative methods a) Attempt to factorise into two equal brackets, (may divide by 4 first - must be correct) M1 Equate coefficient of x to 12 (or 3) A1 $k=-9$ A1
	$144+16 k=0$	A1			b) Uses differentiation to find x ordinate of turning point and uses this to form equation in $k \mathbf{M 1}$
	$k=-9$	A1			Correct equation in $k \mathbf{A 1} k=-9 \mathbf{A 1}$
	OR (see next page)				

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{7(iii) cont.} \& \[
\begin{aligned}
\& 4 x^{2}+12 x=k \\
\& 4\left(x+\frac{3}{2}\right)^{2}-9=k
\end{aligned}
\] \& M1 \& \& Attempts completing the square in given equation or factorises to \((2 x+3)^{2}-9=k\) \& Must involve \(k\) in their working to gain the method marks in this scheme \\
\hline \& Equal roots when \(x=-\frac{3}{2}\)
\[
k=-9
\] \& M1
A1 \& 3
11 \& Substitutes \(x=-\frac{3}{2}\) \& \\
\hline \multirow[t]{4}{*}{8 (i)} \& \(\frac{d y}{d x}=6-2 x\) \& \[
\begin{aligned}
\& \text { M1 } \\
\& \text { A1 }
\end{aligned}
\] \& \& Attempt to differentiate \(\pm y\) Correct expression cao \& One correct non-zero term \\
\hline \& When \(x=5,6-2 x=-4\) \& M1 \& \& Substitute \(x=5\) into their \(\frac{\mathrm{d} y}{\mathrm{~d} x}\) \& \\
\hline \& When \(x=5, y=12\) \& B1 \& \& Correct \(y\) coordinate \& \\
\hline \& \[
y-12=-4(x-5)
\]
\[
4 x+y-32=0
\] \& M1
A1 \& 6 \& \begin{tabular}{l}
Correct equation of straight line through (5 , their y), their non-zero, numerical gradient \\
Shows rearrangement to correct form
\end{tabular} \& \begin{tabular}{l}
Allow \(\frac{y-12}{x-5}=\) their gradient \\
If using \(y=m x+c\) must attempt at evaluating \(c\) \\
Allow any correct form e.g. \(0=2 y+8 x-64\) etc.
\end{tabular} \\
\hline \multirow[t]{2}{*}{(ii)} \& \(Q\) is point \((8,0)\) \& B1ft \& \& ft from line in (i) \& \\
\hline \& \[
\text { Midpoint of } P Q=\left(\frac{5+8}{2}, \frac{12+0}{2}\right)
\] \& M1
A1 \& 3 \& Uses \(\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)\) o.e. for their \(\mathrm{P}, \mathrm{Q}\) \& Do not accept \(\left(\frac{13}{2}, \frac{12}{2}\right)\) \\
\hline (iii) \& \begin{tabular}{l}
\[
6-2 x=0
\] \\
(Line of symmetry is) \(x=3\)
\end{tabular} \& M1
A1 \& 2 \& \begin{tabular}{l}
Solution of their \(\frac{\mathrm{d} y}{\mathrm{~d} x}=0\) \\
Allow from \(\pm\left[16-(x-3)^{2}\right], \pm[6-2 x=0]\)
\end{tabular} \& \begin{tabular}{l}
Alternatives for Method Mark \\
a) attempts completion of square with \(\pm(x-3)^{2}\) \\
b) attempts to solve quadratic (usual scheme) and to find the mid-point of the two roots \\
c) attempts to use \(x=-\frac{b}{2 a}\) (allow one sign slip on substitution)
\end{tabular} \\
\hline (iv) \& \(x<3\) \& M1

A1 \& \[
$$
\begin{gathered}
2 \\
13 \\
\hline
\end{gathered}
$$

\] \& | $x<$ their3 or $x>$ their3 OR attempt to solve their $\frac{\mathrm{d} y}{\mathrm{~d} x}>0$ |
| :--- |
| Allow from $\pm\left[16-(x-3)^{2}\right], \pm[6-2 x=0]$ in (iii) | \& May solve $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ then use $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}<0$ implies maximum point for the method mark, or sketch of curve Allow $x \leq 3$

\hline
\end{tabular}

Allocation of method mark for solving a quadratic

$$
\text { e.g. } \quad 4 x^{2}+12 x-3=0
$$

By factorisation

- when expanded, quadratic term and one other term must be correct (with correct sign):

$$
\begin{aligned}
& (2 x+1)(2 x-3)=0 \quad \text { M1 } 4 x^{2} \text { and }-3 \text { obtained from expansion } \\
& (4 x+4)(x+2)=0 \\
& (4 x-1)(x-3)=0 \\
& \text { M1 } 4 x^{2} \text { and }-3 \text { obtained from expansion } \\
& \text { M1 } 4 x^{2} \text { and }+12 \mathrm{x} \text { obtained from expansion } \\
& \text { M0 only } x^{2} \text { term correct }
\end{aligned}
$$

By formula

- if the formula is quoted correctly first, allow one sign slip in substituting values into it:

$$
a=4, \quad b=12, c=-3
$$

- if the formula is not quoted, then no errors at all are allowed in substitution.

By completing the square

$$
\begin{aligned}
& 4 x^{2}+12 x-3=0 \\
& 4\left[\left(x+\frac{3}{2}\right)^{2}-\frac{9}{4}\right]-3=0 \\
& \left(x+\frac{3}{2}\right)^{2}=3 \\
& x+\frac{3}{2}= \pm \sqrt{3}
\end{aligned}
$$

The method mark is awarded only at the last line of working
i.e. when $\pm \sqrt{ }$ combined constants is seen.
N.B. The value of the combined constants does not have to be correct for the M1 mark

Condone "invisible brackets" if justified by correct later working

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

