RECOGNISING ACHIEVEMENT

GCE

Mathematics

Advanced Subsidiary GCE

Unit 4721: Core Mathematics 1

Mark Scheme for January 2012

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2012
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

Annotations and abbreviations

Annotation in scoris	Meaning
\checkmark and \mathbf{x}	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0, M1	Method mark awarded 0,1
A0, A1	Accuracy mark awarded 0, 1
B0, B1	Independent mark awarded 0,1
SC	Special case
\wedge	Omission sign
MR	Misread
Highlighting	
Other abbreviations	Meaning
in mark scheme	Mark for explaining
E1	Mark for correct units
U1	Mark for a correct feature on a graph
G1	Method mark dependent on a previous mark, indicated by *
M1 dep*	Correct answer only
cao	Or equivalent
oe	Rounded or truncated
rot	Seen or implied
soi	Without wrong working
www	

Subject-specific Marking Instructions for GCE Mathematics Pure strand

Annotations should be used whenever appropriate during your marking.
The A, M and B annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded.

For subsequent marking you must make it clear how you have arrived at the mark you have awarded
An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct solutions leading to correct answers are awarded full marks but work must not be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly.

Correct but unfamiliar or unexpected methods are often signalled by a correct result following an apparently incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, award marks according to the spirit of the basic scheme; if you are in any doubt whatsoever (especially if several marks or candidates are involved) you should contact your Team Leader.

C
The following types of marks are available.
M
A suitable method has been selected and applied in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, eg by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified

A
Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

B

Mark for a correct result or statement independent of Method marks.

E

A given result is to be established or a result has to be explained. This usually requires more working or explanation than the establishment of an unknown result.

Unless otherwise indicated, marks once gained cannot subsequently be lost, eg wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep *' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.

The abbreviation ft implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only - differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, exactly what is acceptable will be detailed in the mark scheme rationale. If this is not the case please consult your Team Leader.

Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.
f Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise. Candidates are expected to give numerical answers to an appropriate degree of accuracy, with 3 significant figures often being the norm. Small variations in the degree of accuracy to which an answer is given (e.g. 2 or 4 significant figures where 3 is expected) should not normally be penalised, while answers which are grossly over- or under-specified should normally result in the loss of a mark. The situation regarding any particular cases where the accuracy of the answer may be a marking issue should be detailed in the mark scheme rationale. If in doubt, contact your Team Leader.

Rules for replaced work

If a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then examiners should do as the candidate requests.

If there are two or more attempts at a question which have not been crossed out, examiners should mark what appears to be the last (complete) attempt and ignore the others.

NB Follow these maths-specific instructions rather than those in the assessor handbook.
For a genuine misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A mark in the question.

Note that a miscopy of the candidate's own working is not a misread but an accuracy error.

Question		Answer	Marks	Guidance	
1		$\frac{15+\sqrt{3}}{3-\sqrt{3}} \times \frac{3+\sqrt{3}}{3+\sqrt{3}}$ $=\frac{48+18 \sqrt{3}}{9-3}$ $=8+3 \sqrt{3}$	M1 A1 A1 A1 [4]	Multiply top and bottom by $\pm(3+\sqrt{3})$ Numerator correct and simplified Denominator correct and simplified to 6 cao	SC If A0A0A0 scored, both parts correct but unsimplified B1 $\text { i.e. } \frac{45+15 \sqrt{3}+3 \sqrt{3}+3}{9+3 \sqrt{3}-3 \sqrt{3}-3} \text { o.e. }$ Alternative method: Equates expression to $a+b \sqrt{3}$ and forms simultaneous equations in a and b M1 Correct method to solve simultaneous equations M1 $a=8$ found A1 $b=3$ found A1
2	(i)		M1 A1 [2]	Reflection of given graph in either axis Correct reflection in y-axis	Clear intention to show $(-2,1),(0,0)$, $(2,2)$ by numbers, dashes or coordinates A0 If significantly short or long
2	(ii)		M1 A1 [2]	Translation of given graph vertically (up or down) Correct translation of two units vertically	Clear intention to show $(-2,4),(0,2)$, $(2,3)$ by numbers, dashes or coordinates A0 If significantly short or long

Question		Answer	Marks	Guidance	
3		$\begin{aligned} & 5 x^{2}+p x-8= 5(x-1)^{2}+r \\ &=5\left(x^{2}-2 x+1\right)+r \\ &=5 x^{2}-10 x+5+r \\ & p=-10 \\ & r=-13 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { [4] } \end{aligned}$	$q=5$ (may be embedded on RHS) $p=-10$ $\begin{aligned} & -8= \pm q+r \text { or } \frac{-p^{2}}{20}-8=r \\ & r=-13 \end{aligned}$	Allow from $p=10$
4	(i)	$\frac{1}{9}$	$\begin{aligned} & \text { B1 } \\ & \text { [1] } \end{aligned}$		
4	(ii)	$(\sqrt[4]{16})^{3}$ $=8$	M1 A1 [2]	Interprets the power $\frac{3}{4}$ correctly $\pm 8 \text { is } \mathbf{A 0}$	$\begin{aligned} & (\sqrt[4]{16})^{3} \text { or }\left(\sqrt[4]{16^{3}}\right) \text { or } \\ & \left(16^{\frac{1}{4}}\right)^{3} \text { or }\left(16^{3}\right)^{\frac{1}{4}} \end{aligned}$
4	(iii)	$5 \sqrt{8} \div \sqrt{8}$ $=5$	M1 A1 [2]	$\sqrt{100} \sqrt{2} \div \sqrt{4} \sqrt{2}$ or $\sqrt{\frac{200}{8}}$ or $\sqrt{25} \sqrt{8} \div \sqrt{8}$ or $\sqrt{1600} \div 8$ soi Condone ± 5	

Question		Answer	Marks	Guidance	
5		$\begin{aligned} & k=\frac{1}{y^{2}} \\ & 3 k^{2}-10 k-8=0 \\ & (3 k+2)(k-4)=0 \\ & k=-\frac{2}{3} \text { or } k=4 \\ & y^{2}=-\frac{3}{2} \text { or } y^{2}=\frac{1}{4} \\ & y= \pm \frac{1}{2} \end{aligned}$	M1* M1dep A1 M1 A1 [5]	Use a correct substitution or pair of substitutions to obtain a quadratic or factorise into 2 brackets each containing $\frac{1}{y^{2}}$ Correct method to solve a quadratic $k=4$ from correct method. If other root stated it must be correct. Attempt to reciprocal and square root to obtain y (either term) No other roots given. Must be from $k=4$ from correct method.	No marks if straight to quadratic formula to get $y="-\frac{2}{3} ", y=" 4 "$ unless correct substitution applied later i.e. reciprocal and square root No marks if quadratic found from incorrect substitution SC If M0 Spotted solutions www B1 each Justifies 2 solutions exactly B3
		Alternative method below: $\begin{array}{ll} 3-10 y^{2}-8 y^{4}=0 & \\ k=y^{2} & \\ 8 k^{2}+10 k-3=0 & \text { M1* } \\ (4 k-1)(2 k+3)=0 & \text { M1 dep } \\ k=\frac{1}{4} \text { or } k=-\frac{3}{2} & \text { A1 } \\ y= \pm \frac{1}{2} & \text { M1 A1 } \end{array}$		$k=\frac{1}{4}$ from correct method. If other root stated it must be correct.	

Question		Answer	Marks	Guidance	
6	(i)	$\mathrm{f}^{\prime}(x)=-4 x^{-2}-3$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & {[3]} \end{aligned}$	Attempt to differentiate $-4 x^{-2}$ Fully correct derivative (no " $+c$ ")	$k x^{-2}$ or -3 correctly obtained
6	(ii)	$\mathrm{f}^{\prime \prime}(x)=8 x^{-3}$ $\mathrm{f}^{\prime \prime}\left(\frac{1}{2}\right)=\frac{8}{\left(\frac{1}{2}\right)^{3}}$ $=64$	M1* A1 M1dep	Attempts to differentiate their (i) Correct derivative Substitutes $x=\frac{1}{2}$ correctly into their $\mathrm{f}^{\prime \prime}(x)$ e.g. $8\left(\frac{1}{2}\right)^{-3}$ (allow "invisible brackets") www	Must involve reducing power of an x term by 1 $\mathrm{f}^{\prime \prime}(x)$ must involve x.
7	(i)	$\begin{aligned} & x^{3}-3 x^{2}+5 x+2 x^{2}-6 x+10 \\ & =x^{3}-x^{2}-x+10 \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=3 x^{2}-2 x-1 \\ & (3 x+1)(x-1)=0 \\ & x=-\frac{1}{3} \text { or } x=1 \\ & \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=6 x-2, x=1 \text { gives }+\mathrm{ve}(4) \end{aligned}$ Min point at $x=1$ $y=9$ found	M1 M1 M1* M1 A1 M1dep A1 A1 [8]	Attempt to multiply out brackets Attempt to differentiate their cubic Sets their $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ Correct method to solve quadratic Correct x values of turning points found www Valid method to establish which is min point with a conclusion Correct conclusion for $x=1$ found from correct factorisation (even if other root incorrect) www for $(1,9)$ given as minimum point (ignore other point here)	Alternative for product rule Attempt to use product rule M1 Expand brackets of both parts M1 Then as main scheme Any extra values for turning points loses all three A marks (eg by sketching positive cubic, second diff method for either of their x values, y co-ords etc.) If constant incorrect in initial expansion, max $\mathbf{5 / 8}$

Question		Answer	Marks	Guidance	
7	(ii)	$\begin{aligned} & (-3)^{2}-4 \times 1 \times 5 \\ & =-11 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & {[2]} \end{aligned}$	Uses $b^{2}-4 a c$	$\sqrt{b^{2}-4 a c}$ is M0
7	(iii)		B2 [2]	Fully correct argument - no extra incorrect statements e.g. 1) Justifying the quadratic factor having no roots so only intersection with x-axis is at $x=$ -2 and stating it's a positive cubic 2) Sketch of positive cubic with one root at $(-2,0)$ and a min point at $(1,9)(f / \mathrm{t}$ positive $y(1)$ from (i))	Award B1 for either of: 1) Justifying the quadratic factor having no roots so only intersection with x-axis is at $x=-2$ 2) Sketch of positive cubic with one root at $(-2,0)$ and a min point with y coordinate positive or 0
8		B lies on l so has coordinates $(x, 11-2 x)$ $\begin{aligned} & (x-3)^{2}+(11-2 x-5)^{2}=(6 \sqrt{5})^{2} \\ & 5 x^{2}-30 x-135=0 \\ & 5(x+3)(x-9)=0 \\ & x=-3, x=9 \\ & y=17, y=-7 \end{aligned}$	M1 M1 M1* M1dep A1 A1 [6]	Attempt to find equation of l with gradient -2 $(x-3)^{2}+(y-5)^{2}=(6 \sqrt{ } 5)^{2}$ o.e. seen Attempts to solve the equations simultaneously to get a quadratic Correct method to solve their quadratic Both x values Both y values	e.g. by substitution as shown SC If A0 A0, one correct pair of values from correct factorisation www B1
		Alternative method: $\begin{aligned} & \text { Use of }(1,2, \sqrt{5}) \text { triangle with } \\ & \text {-ve gradient M1 } \\ & \text { Scaling to } 6 \sqrt{5} \text { M1 } \\ & (3,5)+(6,-12) \text { M1 } \\ & (9,-7) \text { A1 } \\ & (3,5)-(6,-12) \text { M1 } \\ & (-3,17) \text { A1 } \end{aligned}$		SC Spotted solutions Each correct pair www B1 (May also earn first two Ms as in main scheme) -1 for one or two extra incorrect solutions -2 for three or more extra incorrect solutions Checks solutions and justifies only two solution * NB - First M1 may also be awarded for estab solution(s) is -2	B2 shing gradient between $(3,5)$ and their

Question		Answer	Marks	Guidance	
9	(i)	$\begin{aligned} & (x-3)(x+4)=0 \\ & x=3 \text { or } x=-4 \end{aligned}$	M1 A1 B1 B1 B1	Correct method to find roots Correct roots Negative quadratic curve y intercept $(0,12)$ Good curve, with correct roots 3 and -4 indicated and max point in $2^{\text {nd }}$ quadrant	i.e. \max at $(0,12) \mathbf{B 0}$ Curve must go below x-axis for final mark
9	(ii)	$-4<x<3$	M1 A1 [2]	Correct method to solve quadratic inequality Allow \leq for the method mark but not the accuracy mark	their lower root $<x<$ their higher root Allow " $x>-4, x<3$ " Allow " $x>-4$ and $x<3$ " Do not allow " $x>-4$ or $x<3$ "
9	(iii)	$\begin{aligned} & y=4-3 x \\ & 12-x-x^{2}=4-3 x \end{aligned}$ $\begin{aligned} & x^{2}-2 x-8=0 \\ & (x-4)(x+2)=0 \\ & x=4 \text { or } x=-2 \\ & y=-8 \text { or } y=10 \end{aligned}$	M1 A1 M1 A1 A1 [5]	substitute for x / y or attempt to get an equation in 1 variable only obtain correct 3 term quadratic correct method to solve 3 term quadratic	e.g. for first mark $3 x+12-x-x^{2}=4$, or $y=12-\left(\frac{4-y}{3}\right)-\left(\frac{4-y}{3}\right)^{2}$ (this leads to $y^{2}-2 y-80=0$). Condone poor algebra for this mark. SC If A0 A0, give B1 for one correct pair of values spotted or from correct factorisation www

Question		Answer	Marks	Guidance	
10	(i)	$(x+2)^{2}+(y-4)^{2}=25$ $\begin{aligned} & x^{2}+4 x+4+y^{2}-8 y+16-25=0 \\ & x^{2}+y^{2}+4 x-8 y-5=0 \end{aligned}$	M1 M1 A1 [3]	$\begin{aligned} & (x+2)^{2} \text { and }(y-4)^{2} \text { seen (or implied by } \\ & \left.x^{2}+4 x+y^{2}-8 y\right) \\ & (x \pm 2)^{2}+(y \pm 4)^{2}=25 \end{aligned}$ Correct equation in correct form (terms can be in any order but must have " $=0$ ")	Alternative markscheme for f, g, c method: $\begin{aligned} & x^{2}+4 x+y^{2}-8 y \quad \text { B1 } \\ & c=2^{2}+(\pm 4)^{2}-25 \quad \text { M1 } \end{aligned}$ Correct equation in correct form A1
10	(ii)	$\begin{aligned} & \text { gradient of radius }=\frac{8-4}{-5+2} \\ & =\frac{-\frac{4}{3}}{} \\ & \text { gradient of tangent }=\frac{3}{4} \\ & y-8=\frac{3}{4}(x+5) \\ & 3 x-4 y+47=0 \end{aligned}$	M1 A1 B1FT M1 A1 [5]	uses $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}(3 / 4$ substitutions correct) Allow $\frac{4}{-3}$ correct equation of straight line through $(-5,8)$, any non-zero gradient Shows rearrangement to given equation AG CWO throughout for A1	
		Alternative by rearrangement Gradient of radius $=\frac{8-4}{-5+2}=\frac{-4}{3} \mathbf{M 1} * \mathbf{A 1}$ Attempts to rearrange equation of line to find gradient of line $=\frac{3}{4}$ M1dep Multiply gradients to get -1 B1 Check $(-5,8)$ lies on line B1 (dep on both M1s)		Alternative for equating given line to circle Substitute for x / y or attempt to get an equation in 1 variable only $\mathbf{M 1}$ $k\left(x^{2}+10 x+25\right)=0 \text { or } k\left(y^{2}-16 y+64\right)=0$ A1 Correct method to solve quadratic M1 $\mathrm{x}=-5, \mathrm{y}=8$ found $\mathbf{A 1}$ States one root implies tangent B1	Alternative markscheme for implicit differentiation: M1 Attempt at implicit diff as evidenced by $2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}$ term A1ft $2 x+2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}+4-8 \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \mathrm{ft}$ from their equation in (i) A1 Substitution of $(-5,8)$ to obtain $\frac{3}{4}$ then final 2 marks as main scheme

Question		Answer	Marks	Guidance	
10	(iii)	$(3 \times 3)-(4 \times 14)+47=0$	B1 [1]	Sufficient correct working to verify statement e.g. verifying co-ordinate as shown	Alt: showing line joining $(-5,8)$ to $(3$, 14) has same gradient etc.
10	(iv)	$\begin{aligned} & \sqrt{\left(3-{ }^{-} 5\right)^{2}+(14-8)^{2}} \\ & =10 \end{aligned}$ $\begin{aligned} \text { Area of triangle } & =\frac{1}{2} \times 10 \times 5 \\ & =25 \end{aligned}$	M1 A1 M1 A1 [4]	Use of $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$ for $T P$ Must use their $T P$ and their $C P$	Alternative method: Attempt to find area of enclosing rectangle and subtract areas of other three triangles M1* Correct use area of triangle formula M1 dep All four values correct A1 Final answer correct A1 (Use the same principle for any enclosing shape)

Solving a quadratic

This is particularly important to mark correctly as it can sometimes feature several times on a single examination paper. An example is usually included with the markscheme each session; this has varied slightly over the years and should be referred to every session. Consider the equation $3 x^{2}-10 x-8=0$.

1) If the candidate attempts to solve by factorisation, their attempt when expanded must produce the correct quadratic term and one other correct term (with correct sign):
$(3 x+1)(x-8)=0$
M1 $3 x^{2}$ and -8 obtained from expansion
$(3 x-1)(x-3)=0$
M1 $3 x^{2}$ and $-10 x$ obtained from expansion
$(3 x-2)(x-4)=0$
MO only $3 x^{2}$ term correct
2) If the candidate attempts to solve by using the formula
a) If the formula is quoted incorrectly then MO.
b) If the formula is quoted correctly then one sign slip is permitted. Substituting the wrong numerical value for a or b or c scores M0.

$\frac{-10 \pm \sqrt{(-10)^{2}-4 \times 3 \times-8}}{6}$	earns M1 (minus sign incorrect at start of formula)
$\frac{10 \pm \sqrt{(-10)^{2}-4 \times 3 \times-8}}{2 \times 3}$	earns M1 (8 for c instead of -8$)$
$\frac{-10 \pm \sqrt{(-10)^{2}-4 \times 3 \times 8}}{6}$	M0 (2 sign errors: initial sign and c incorrect)
$\frac{10 \pm \sqrt{(-10)^{2}-4 \times 3 \times-8}}{2 \times-10}$	M0 (2b on the denominator)

Notes - for equations such as $3 x^{2}-10 x-8=0$, then $b^{2}=10^{2}$ would be condoned in the discriminant and would not be counted as a sign error. Repeating the sign error for a both occurrences in the formula would be two sign errors and score M0.
c) If the formula is not quoted at all, substitution must be completely correct to earn the M1
3) If the candidate attempts to complete the square, they must get to the "square root stage" involving \pm; we are looking for evidence that the candidate knows a quadratic has two solutions.

$$
\begin{aligned}
& 3 x^{2}-10 x-8=0 \\
& 3\left(x^{2}-\frac{10}{3} x\right)-8=0 \\
& 3\left(\left(x-\frac{5}{3}\right)^{2}-\frac{25}{9}\right]-8=0 \\
& \left(x-\frac{5}{3}\right)^{2}=\frac{49}{9} \\
& x-\frac{5}{3}= \pm \sqrt{\frac{49}{9}} \quad \begin{array}{l}
\text { This is where the M1 is awarded }- \\
\text { arithmetical errors may be condoned } \\
\text { provided } x-\frac{5}{3} \text { (or equivalent) seen or } \\
\text { implied }
\end{array}
\end{aligned}
$$

If a candidate makes repeated attempts (e.g. fails to factorise and then tries the formula), mark only what you consider to be their last full attempt see guidance later in this document.

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

