GCE

Mathematics

Advanced Subsidiary GCE

Mark Scheme for January 2013

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

Annotations and abbreviations

Annotation in scoris	Meaning
\checkmark and \boldsymbol{x}	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0, M1	Method mark awarded 0, 1
A0, A1	Accuracy mark awarded 0,1
B0, B1	Independent mark awarded 0,1
SC	Special case
\wedge	Omission sign
MR	Misread
Highlighting	

Other abbreviations in mark scheme	Meaning
E1	Mark for explaining
U1	Mark for correct units
G1	Mark for a correct feature on a graph
M1 dep*/DM1	Method mark dependent on a previous mark, indicated by *
cao	Correct answer only
oe	Or equivalent
rot	Rounded or truncated
soi	Seen or implied
www	Without wrong working

Subject-specific Marking Instructions for GCE Mathematics Pure strand

a. Annotations should be used whenever appropriate during your marking.

The A, M and B annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded.

For subsequent marking you must make it clear how you have arrived at the mark you have awarded.
b. An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct solutions leading to correct answers are awarded full marks but work must not be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly.

Correct but unfamiliar or unexpected methods are often signalled by a correct result following an apparently incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, award marks according to the spirit of the basic scheme; if you are in any doubt whatsoever (especially if several marks or candidates are involved) you should contact your Team Leader.
c. The following types of marks are available.

M

A suitable method has been selected and applied in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, eg by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.

A

Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

B

Mark for a correct result or statement independent of Method marks.

E
A given result is to be established or a result has to be explained. This usually requires more working or explanation than the establishment of an unknown result.
Unless otherwise indicated, marks once gained cannot subsequently be lost, eg wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument
d. When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep *' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.
e. The abbreviation ft implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results Otherwise, A and B marks are given for correct work only - differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, exactly what is acceptable will be detailed in the mark scheme rationale. If this is not the case please consult your Team Leader.

Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.
f. Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise. Candidates are expected to give numerical answers to an appropriate degree of accuracy, with 3 significant figures often being the norm. Smal variations in the degree of accuracy to which an answer is given (eg 2 or 4 significant figures where 3 is expected) should not normally be penalised, while answers which are grossly over- or under-specified should normally result in the loss of a mark. The situation regarding any particular cases where the accuracy of the answer may be a marking issue should be detailed in the mark scheme rationale. If in doubt, contact your Team Leader.
g. Rules for replaced work

If a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then examiners should do as the candidate requests.

If there are two or more attempts at a question which have not been crossed out, examiners should mark what appears to be the last (complete) attempt and ignore the others.

NB Follow these maths-specific instructions rather than those in the assessor handbook.
h. For a genuine misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A or B mark in the question.

Note that a miscopy of the candidate's own working is not a misread but an accuracy error.

Question		Answer	Marks	Guidance	
3	(i)	$\begin{aligned} & 2 k \times 3=9 \\ & k=1.5 \end{aligned}$	M1 A1 [2]	Attempt to find k Obtain $k=1.5$	Substitute $x=2$ and ${ }^{\mathrm{d} y} / \mathrm{d} x=9$ into given differential equation and attempt to find k Allow any exact equiv. including $9 / 6$
3	(ii)	$\begin{aligned} & y=x^{3}-0.75 x^{2}+c \\ & 7=8-3+c \text { hence } c=2 \\ & y=x^{3}-0.75 x^{2}+2 \end{aligned}$	M1	Expand bracket and attempt integration	M0 if bracket not expanded first M1 can still be gained for integrating an incorrect expansion as long as there are two terms For an 'integration attempt' there must be an increase in power by 1 for both terms
			A1ft	Obtain at least one correct term (allow still in terms of k)	Follow through on their value of k (but not on an incorrect expansion at start of part (ii)) Can also get A1 if still in terms of k Allow unsimplified coefficients
			A1	Obtain $x^{3}-0.75 x^{2}($ condone no $+c)$	Must now be numerical, and no f-t Allow unsimplified coefficients A0 if integral sign or $\mathrm{d} x$ still present, unless it later disappears
			M1	Attempt to find c using (2,7)	There must have been an attempt at integration, but can follow M0 eg if the bracket was not expanded first Need to get as far as actually attempting c M1 could be implied by eg 7=8-3 followed by an attempt to include a constant to balance the equation M0 if no $+c$ seen or implied M0 if using $x=7, y=2$
			A1 [5]	Obtain $y=x^{3}-0.75 x^{2}+2$	Coefficients now need to be simplified (0.75 or ${ }^{3} / 4$) Must be an equation ie $y=\ldots$, so A 0 for ' $\mathrm{f}(x)=\ldots$..' or 'equation = ...' Allow aef, such as $4 y=4 x^{3}-3 x^{2}+8$

Question			Answer	Marks		Guidance
4	(i)	$\begin{aligned} & (2+x)^{5}=32+80 x+80 x^{2}+40 x^{3}+ \\ & 10 x^{4}+x^{5} \end{aligned}$		M1*	Attempt expansion resulting in at least 5 terms - products of powers of 2 and x	Each term must be an attempt at a product, including binomial coeffs if used Allow M1 for no, or incorrect, binomial coeffs Powers of 2 and x must be intended to sum to 5 within each term (allow slips if intention correct) Allow M1 for powers of $1 / 2 x$ from expanding $k(1+1 / 2 x)^{5}$, any k (allow if powers only applied to x and not $1 / 2$)
				M1d*	Attempt to use correct binomial coefficients	At least 5 correct from 1, 5, 10, 10, 5, 1-allow missing or incorrect (but not if raised to a power) May be implied rather than explicit Must be numerical eg ${ }^{5} \mathrm{C}_{1}$ is not enough They must be part of a product within each term The coefficient must be used in an attempt at the relevant term ie $5 \times 2^{3} \times x^{3}$ is M0 Allow M1 for correct coeffs from $k(1+1 / 2 x)^{5}$, any k
				A1	Obtain at least 4 correct simplified terms	Either linked by '+' or as part of a list
				A1	Obtain a fully correct expansion	Terms must be linked by ' + ' and not just commas A0 if a correct expansion is subsequently spoiled by attempt to simplify, including division
						SR for expanding brackets: M2 - for attempt using all 5 brackets giving a quintic A1 - obtain at least 4 correct simplified terms A1 - obtain a fully correct expansion
				[4]		

Question			Answer	Marks		Guidance
6	(ii)	(b)	$\begin{aligned} & (2 x-7) /(x+4)={ }^{(x+4)} / 2 x \\ & 4 x^{2}-14 x=x^{2}+8 x+16 \end{aligned}$ OR $\begin{aligned} & 2 x r=x+4 \quad 2 x r^{2}=2 x-7 \\ & 3 x^{2}-22 x-16=0 \\ & (3 x+2)(x-8)=0 \\ & x=-2 / 3, x=8 \end{aligned}$	M1* A1 M1d* A1 [4]	Attempt to eliminate r to obtain equation in x only Obtain $3 x^{2}-22 x-16=0$ Attempt to solve quadratic Obtain $x=-2 / 3$	Equate two expressions for r, both in terms of x Could use $a r^{n-1}$ twice, and then eliminate r from simultaneous eqns Allow $6 x^{2}-44 x-32=0$ Allow $3 x^{3}-22 x^{2}-16 x=0$, or a multiple of this Allow any equivalent form, as long as no brackets and like terms have been combined Condone no $=0$, as long as implied by subsequent work Dependent on first M1 for valid method to eliminate r See guidance sheet for acceptable methods Allow recurring decimal, but not rounded or truncated Condone $x=8$ also given Allow from no working or T\&I
7	(i)		$\cos ^{-1} /{ }_{7}=0.5411 \quad$ AG	M1 A1 [2]	Attempt correct method to find angle $C A B$ Obtain 0.5411	Either use cosine rule or right-angled trigonometry Allow M1 for $\cos A=6 / 7$ or equiv from cosine rule If first finding another angle, they must get as far as attempting angle $C A B$ for the M1 Allow in degrees or radians Must be given to exactly 4 sf , as per question If angle found as 31° then conversion to radians must be shown explicitly

Question		Answer$\begin{aligned} \text { arc length } & =7 \times(2 \times 0.5411) \\ & =7.575 \\ \text { perimeter } & =15.2 \end{aligned}$	$\frac{\text { Marks }}{\text { M1 }}$		Guidance
7	(ii)			Attempt arc length using 7θ	Must be using $r=7$ Allow if using $\theta=0.5411$ not 1.0822 If no method shown then award M1 for value seen in the range [7.56, 7.58] M0 if using angle other than 0.5411 or 1.0822 (inc M0 for 1.0822π) but allow M1 if required angle is intended eg 0.54 or a slip when doubling 0.5411 Allow valid method with degrees, but M0 for 7θ with θ in degrees Allow equivalent method using fractions of the circle
			A1 [2]	Obtain perimeter as 15.2, or better	Allow 15.15, or anything that rounds to this with no errors seen

Question		Answer $\begin{aligned} \text { sector area } & =1 / 2 \times 7^{2} \times(2 \times 0.5411) \\ & =26.51 \\ \text { triangle area } & =1 / 2 \times 7^{2} \times \sin 1.082 \\ & =21.63 \end{aligned}$ area of segment $=4.88$ shaded area $=9.76 \mathrm{~cm}^{2}$	Marks		Guidance
7	(iii)		M1*	Attempt area of one sector using $(1 / 2) \times 7^{2} \times \theta$, or equiv	Allow if using $\theta=0.5411$ not 1.0822 Allow M1 if 13.3 or 26.5 seen with no method M0 if using angle other than 0.5411 or 1.0822 (inc M0 for 1.0822π) unless clearly intended as correct angle Allow equivalent method using fractions of the circle Allow valid method with degrees, but M0 for $(1 / 2) r^{2} \theta$ with θ in degrees Condone omission of $1 / 2$, but no other error May be seen explicitly or implied in method eg as part of $1 / 2 r^{2}(\theta-\sin \theta)$
			M1*	Attempt area of relevant triangle or area of rhombus	Condone omission of $1 / 2$ from $1 / 2 a b \sin \theta$ Allow if using $\theta=0.5411$ not 1.0822 in $(1 / 2) \times 7^{2} \times \sin \theta$ Allow if attempting area of triangle $A B C$ Could be using radians or degrees Allow even if evaluated in incorrect mode If using a right-angled triangle, it must be $1 / 2 b h$, and valid use of trig to find b or h
			A1	Obtain 4.88, or better, either as final answer or soi in method	Could come from finding area of segment but omitting to double it Allow inaccuracy - values in range [4.85, 4.9] Allow even if value not seen explicitly - could be implied by part of a calculation or even by final answer
			M1d*	Attempt correct method to find required area	Must be full and valid method - including attempted use of correct angle and subtraction in correct order Could find area of one segment and double it Other methods are possible eg 2 x sector minus rhombus
			A1 [5]	Obtain 9.76, or better	Allow answer rounding to 9.76, no errors seen

Question		Answer	Marks	Guidance		
$\mathbf{8}$	(i)		Translation of 3 units in positive x - direction	B1	State translation	B1
State or imply 3 units in positive x - direction						
Must be 'translation' and not 'move', slide', 'shift' etc Independent of first B1 Allow vector notation, but not a coordinate ie (3, 0) Worded descriptions must give clear intention of direction, so B0 for just ' x-direction' or 'parallel to x-axis' unless +3 also stated (as ' + implies the direction) For the direction, allow 'in the positive x-direction', 'parallel to the positive x-axis' or 'to the right' Do not allow 'in the positive x-axis' or 'along the positive -axis' even if combined with correct statement eg 'right' Allow '3' or '3 units' but not '3 places', '3 squares', 'sf 3'... Ignore irrelevant statements (eg intercepts on axes), but penalise contradictions						
B0 B0 if second transformation also given						

APPENDIX 1

Guidance for marking C2

Accuracy

Allow answers to 3 sf or better, unless an integer is specified or clearly required
Answers to 2 sf are penalised, unless stated otherwise in the mark scheme.
3 sf is sometimes explicitly specified in a question - this is telling candidates that a decimal is required rather than an exact answer eg in logs, and more than 3 sf should not be penalised unless stated in mark scheme.
If more than 3sf is given, allow the marks for an answer that falls within the guidance given in the mark scheme, with no obvious errors.

Extra solutions

Candidates will usually be penalised if an extra, incorrect, solution is given. However, in trigonometry questions only look at solutions in the given range and ignore any others, correct or incorrect.

Solving equations

With simultaneous equations, the method mark is given for eliminating one variable. Any valid method is allowed ie balancing or substitution for two linear equations, substitution only if at least one is non-linear.

Solving quadratic equations

Factorising - candidates must get as far as factorising into two brackets which, on expansion, would give the correct coefficient of x^{2} and at least one of the other two coefficients. This method is only credited if it is possible to factorise the quadratic - if the roots are surds then candidates are expected to use either the quadratic formula or complete the square.
Completing the square - candidates must get as far as $(x+p)= \pm \sqrt{ }$, with reasonable attempts at p and q
Using the formula - candidates need to substitute values into the formula, with some attempt at evaluation (eg calculating 4ac). Sign slips are allowed on b and $4 a c$, but all other aspects of the formula must be seen correct, either algebraic or numerical. The division line must extend under the entire numerator (seen or implied by later working). If the algebraic formula is quoted then candidates are allowed to make one slip when substituting their values. Condone not dividing by $2 a$ as long as it has been seen earlier

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

