Mark Scheme (Final) Summer 2007

GCE

GCE Mathematics (6665/01)

June 2007

6665 Core Mathematics C3
Mark Scheme

Question Number	Scheme	Marks
1. (a)	$\ln 3 x=\ln 6$ or $\ln x=\ln \left(\frac{6}{3}\right) \quad$ or $\ln \left(\frac{3 x}{6}\right)=0$ $x=2 \quad$ (only this answer)	$\begin{array}{\|l\|l\|} \hline \text { M1 } \\ \text { A1 (cso) (2) } \\ \hline \end{array}$
(b)	$\begin{aligned} & \left.\left(\mathrm{e}^{x}\right)^{2}-4 \mathrm{e}^{x}+3=0 \quad \text { (any } 3 \text { term form }\right) \\ & \left(\mathrm{e}^{x}-3\right)\left(\mathrm{e}^{x}-1\right)=0 \\ & \mathrm{e}^{x}=3 \quad \text { or } \quad \mathrm{e}^{x}=1 \quad \text { Solving quadratic } \\ & x=\ln 3, \quad x=0 \quad(\text { or } \ln 1) \quad \end{aligned}$	M1 M1 dep M1 A1 $\quad(4)$ $\quad(6$ marks)

Notes: (a) Answer $x=2$ with no working or no incorrect working seen: M1A1
Note: $x=2$ from $\ln x=\frac{\ln 6}{\ln 3}=\ln 2$ M0A0
$\ln x=\ln 6-\ln 3 \Rightarrow x=e^{(\ln 6-\ln 3)}$ allow M1, $x=2$ (no wrong working) A1
(b) $1^{\text {st }} \mathrm{M} 1$ for attempting to multiply through by e^{x} : Allow y, X, even x, for e^{x} $2^{\text {nd }} \mathrm{M} 1$ is for solving quadratic as far as getting two values for e^{x} or y or X etc $3^{\text {rd }} \mathrm{M} 1$ is for converting their answer(s) of the form $\mathrm{e}^{\mathrm{x}}=\mathrm{k}$ to $\mathrm{x}=\operatorname{lnk}$ (must be exact)

A1 is for $\ln 3$ and $\ln 1$ or 0 (Both required and no further solutions)
2.
(a) $2 x^{2}+3 x-2=(2 x-1)(x+2) \quad$ at any stage
$\mathrm{f}(x)=\frac{(2 x+3)(2 x-1)-(9+2 x)}{(2 x-1)(x+2)}$
f.t. on error in denominator factors
(need not be single fraction)
Simplifying numerator to quadratic form
B1

M1, A1 $\sqrt{ }$

M1

Alt.(a)
$2 x^{2}+3 x-2=(2 x-1)(x+2) \quad$ at any stage
$\begin{aligned} \mathrm{f}(x)= & \frac{(2 x+3)\left(2 x^{2}+3 x-2\right)-}{(x+2)\left(2 x^{2}+3\right.} \\ & =\frac{4 x^{3}+10 x^{2}-8 x-24}{(x+2)\left(2 x^{2}+3 x-2\right)}\end{aligned}$
$=\frac{2(x+2)\left(2 x^{2}+x-6\right)}{(x+2)\left(2 x^{2}+3 x-2\right)}$ or $\frac{2(2 x-3)\left(x^{2}+4 x+4\right)}{(x+2)\left(2 x^{2}+3 x+2\right)} \quad$ o.e.
Any one linear factor \times quadratic factor in numerator M1, A1
$=\frac{2(x+2)(x+2)(2 x-3)}{(x+2)\left(2 x^{2}+3 x-2\right)}$ o.e.
$=\frac{2(2 x-3)}{2 x-1} \quad \frac{4 x-6}{2 x-1}$
(*)

$$
=\frac{8}{(2 x-1)^{2}} \text { or } 8(2 x-1)^{-2}
$$

Not treating f^{-1} (for f^{\prime}) as misread

A1

M1

A1 cso
(7)

A1

M1 A1

A1
(3)

$=\frac{4 x^{2}+2 x-12}{[(2 x-1)(x+2)]}$	A 1	
$=\frac{2(2 x-3)(x+2)}{(2 x-1)(x+2)}$	o.e.	M1
$=\frac{4 x-6}{2 x-1}$	(*)	A1 cso

B1
M1A1 f.t.

M1
(10 marks)

Notes: (a) $1^{\text {st }}$ M1 in either version is for correct method
$1^{\text {st }}$ A1 Allow $\frac{2 x+3(2 x-1)-(9+2 x)}{(2 x-1)(x+2)}$ or $\frac{(2 x+3)(2 x-1)-9+2 x}{(2 x-1)(x+2)}$ or $\frac{2 x+3(2 x-1)-9+2 x}{(2 x-1)(x+2)}$ (fractions)
$2^{\text {nd }}$ M1 in (main a) is for forming 3 term quadratic in numerator
$3^{\text {rd }}$ M1 is for factorising their quadratic (usual rules) ; factor of 2 need not be extracted
(*) A1 is given answer so is cso
Alt :(a) $3{ }^{\text {rd }} \mathrm{M} 1$ is for factorising resulting quadratic
(b) SC: For M allow \pm given expression or one error in product rule

Alt: Attempt at $\mathrm{f}(x)=2-4(2 x-1)^{-1}$ and diff. M1; $k(2 x-1)^{-2} \mathrm{~A} 1 ; \mathrm{A} 1$ as above Accept $8\left(4 x^{2}-4 x+1\right)^{-1}$.
Differentiating original function - mark as scheme.

Question Number	Scheme	Marks
3. $\begin{aligned} & (\text { a }) \\ & (b) \\ & \\ & (\text { c) }\end{aligned}$	$\frac{\mathrm{d} y}{\mathrm{~d} x}=x^{2} \mathrm{e}^{x}+2 x \mathrm{e}^{x}$	M1,A1,A1 (3)
	$\begin{array}{\|lcl\|} \hline \text { If } \frac{\mathrm{d} y}{\mathrm{~d} x}=0, & \mathrm{e}^{x}\left(x^{2}+2 x\right)=0 & \text { setting }(a)=0 \\ {\left[\mathrm{e}^{x} \neq 0\right]} & x(x+2)=0 & \\ & (x=0) & x=-2 \\ & x=0, y=0 & \text { and } \end{array} \begin{aligned} & x=-2, y=4 \mathrm{e}^{-2}(=0.54 \ldots) \tag{3}\\ & \hline \end{aligned}$	M1 A1 $\mathrm{A} 1 \mathrm{~V}$
	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=x^{2} \mathrm{e}^{x}+2 x \mathrm{e}^{x}+2 x \mathrm{e}^{x}+2 \mathrm{e}^{x} \quad\left[=\left(x^{2}+4 x+2\right) \mathrm{e}^{x}\right]$	M1, A1 (2)
	$x=0, \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}>0(=2) \quad x=-2, \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}<0 \quad\left[=-2 \mathrm{e}^{-2}(=-0.270 \ldots)\right]$ M1: Evaluate, or state sign of, candidate's (c) for at least one of candidate's x value(s) from (b) \therefore minimum \therefore maximum	M1 A1 (cso) (2)
	For M1: Evaluate, or state sign of, $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at two appropriate values - on either side of at least one of their answers from (b) or Evaluate y at two appropriate values - on either side of at least one of their answers from (b) or Sketch curve	(10 marks)

Notes: (a) M for attempt at $f(x) g^{\prime}(x)+f^{\prime}(x) g(x)$
$1^{\text {st }} \mathrm{A} 1$ for one correct, $2^{\text {nd }} \mathrm{A} 1$ for the other correct.
Note that $x^{2} e^{x}$ on its own scores no marks
(b) $1^{\text {st }}$ A1 $(x=0)$ may be omitted, but for
$2^{\text {nd }}$ A1 both sets of coordinates needed ; f.t only on candidate's $x=-2$
(c) M1 requires complete method for candidate's (a), result may be unsimplified for A1
(d) A1 is cso; $x=0, \min$, and $x=-2$, max and no incorrect working seen,
or (in alternative) sign of $\frac{d y}{d x}$ either side correct, or values of y appropriate to t.p.
Need only consider the quadratic, as may assume $\mathrm{e}^{x}>0$.
If all marks gained in (a) and (c), and correct x values, give M1A1 for correct statements with no working

Notes: (a) $1^{\text {st }} \mathrm{M} 1$ for correct method for R
$2^{\text {nd }}$ M1 for correct method for $\tan \alpha$
No working at all: M1A1 for $\sqrt{ } 13$, M1A1 for 0.588 or 33.7°.
N.B. R $\cos \alpha=2, R \sin \alpha=3$ used, can still score M1A1 for R, but loses the A mark for α. $\cos \alpha=3, \sin \alpha=2$: apply the same marking.
(b) M1 for realising $\sin (x+\alpha)= \pm 1$, so finding R^{4}.
(c) Working in mixed degrees/rads : first two marks available

Working consistently in degrees: Possible to score first 4 marks
[Degree answers, just for reference only, are 130.2° and 342.4°]
Third M1 can be gained for candidate's 0.281 - candidate's $0.588+2 \pi$ or equiv. in degrees One of the answers correct in radians or degrees implies the corresponding M mark.

Alt: (c) (i) Squaring to form quadratic in $\sin x$ or $\cos x$ M1
$\left[13 \cos ^{2} x-4 \cos x-8=0, \quad 13 \sin ^{2} x-6 \sin x-3=0\right]$
Correct values for $\cos x=0.953 \ldots,-0.646$; or $\sin x=0.767,2.27$ awrt A1
For any one value of $\cos x$ or $\sin x$, correct method for two values of $x \quad$ M1
$x=2.273$ or $x=5.976$ (awrt) Both seen anywhere A1
Checking other values $(0.307,4.011$ or $0.869,3.449)$ and discarding M1
(ii) Squaring and forming equation of form $a \cos 2 x+b \sin 2 x=c$
$9 \sin ^{2} x+4 \cos ^{2} x+12 \sin 2 x=1 \Rightarrow 12 \sin 2 x+5 \cos 2 x=11$
Setting up to solve using R formula e.g. $\sqrt{ } 13 \cos (2 x-1.176)=11$

$$
\begin{array}{lll}
(2 x-1.176)=\cos ^{-1}\left(\frac{11}{\sqrt{13}}\right)=0.562(0 \ldots & (\alpha) & \text { A1 } \\
(2 x-1.176)=2 \pi-\alpha, 2 \pi+\alpha, \ldots \ldots \ldots . & & \text { M1 }
\end{array}
$$

$x=2.273$ or $x=5.976$ (awrt) Both seen anywhere A1
Checking other values and discarding

Question Number	Scheme	Marks
7. $\begin{aligned} &(a) \\ & \\ & \\ & \\ & \text { Alt.(a) }\end{aligned}$	$\frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta}=\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\cos \theta \sin \theta}$ M1 Use of common denominator to obtain single fraction $=\frac{1}{\cos \theta \sin \theta}$ M1 Use of appropriate trig identity (in this case $\sin ^{2} \theta+\cos ^{2} \theta=1$) $\begin{array}{ll} =\frac{1}{\frac{1}{2} \sin 2 \theta} & \text { Use of } \sin 2 \theta=2 \sin \theta \cos \theta \\ =2 \operatorname{cosec} 2 \theta \end{array} \quad \text { (*) } \quad l$ $\begin{align*} \frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta}=\tan \theta+\frac{1}{\tan \theta} & =\frac{\tan ^{2} \theta+1}{\tan \theta} \\ & =\frac{\sec ^{2} \theta}{\tan \theta} \\ & =\frac{1}{\cos \theta \sin \theta}=\frac{1}{\frac{1}{2} \sin 2 \theta} \tag{M1}\\ & =2 \operatorname{cosec} 2 \theta \quad \text { *) } \end{align*}$ A1 If show two expressions are equal, need conclusion such as QED, tick, true.	M1 M1 M1 A1 cso (4)
(b)	${ }^{y} \uparrow$ 2	B1 B1 dep. (2)
(c) Note	$2 \operatorname{cosec} 2 \theta=3$ $\sin 2 \theta=\frac{2}{3} \quad$ Allow $\frac{2}{\sin 2 \theta}=3 \quad[$ M1 for equation in $\sin 2 \theta]$ $(2 \theta)=\left[41.810 \ldots{ }^{\circ}, 138.189 \ldots{ }^{\circ} ; \quad 401.810 \ldots .^{\circ}, 498.189 \ldots{ }^{\circ}\right]$ 1st M1 for $\alpha, 180-\alpha ; 2^{\text {nd }}$ M1 adding 360° to at least one of values $\begin{equation*} \theta=20.9^{\circ}, 69.1^{\circ}, 200.9^{\circ}, 249.1^{\circ} \quad(1 \mathrm{~d} . \mathrm{p} .) \tag{6} \end{equation*}$ $1^{\text {st }} \mathrm{A} 1$ for any two correct, $2^{\text {nd }} \mathrm{A} 1$ for other two Extra solutions in range lose final A1 only SC: Final 4 marks: $\theta=20.9^{\circ}$, after M0M0 is B1; record as M0M0A1A0	M1, A1 M1; M1 A1,A1
Alt.(c)	$\tan \theta+\frac{1}{\tan \theta}=3$ and form quadratic, $\tan ^{2} \theta-3 \tan \theta+1=0 \quad$ M1, A1 (M1 for attempt to multiply through by $\tan \theta$, A1 for correct equation above) Solving quadratic $\quad\left[\tan \theta=\frac{3 \pm \sqrt{5}}{2} \quad=2.618 \ldots\right.$ or $\left.=0.3819 \ldots\right] \quad$ M1 $\theta=69.1^{\circ}, 249.1^{\circ} \quad \theta=20.9^{\circ}, 200.9^{\circ} \quad \text { (1 d.p.) M1, A1, A1 }$ (M1 is for one use of $180^{\circ}+\alpha^{\circ}, \mathrm{A} 1 \mathrm{~A} 1$ as for main scheme)	(12 marks)

Notes: (b) (main scheme) M1 is for $\left(10+10 \mathrm{e}^{-\frac{5}{8}}\right) \mathrm{e}^{-\frac{1}{8}}$, or $\{10+\operatorname{their}(\mathrm{a})\} \mathrm{e}^{-\frac{1}{8}}$
N.B. The answer is given. There are many correct answers seen which deserve M0A0 or M1A0
(c) $1^{\text {st }} \mathrm{M}$ is for $\left(10+10 \mathrm{e}^{-\frac{5}{8}}\right) e^{-\frac{T}{8}}=3$ o.e.
$2^{\text {nd }} \mathrm{M}$ is for converting $e^{-\frac{T}{8}}=k(\mathrm{k}>0)$ to $-\frac{T}{8}=\ln k$. This is independent of $1^{\text {st }} \mathrm{M}$.
Trial and improvement: M1 as scheme,
M1 correct process for their equation (two equal to 3 s.f.)
A1 as scheme

