

GCE

Mathematics

Advanced GCE **A2 7890 - 2**

Advanced Subsidiary GCE AS 3890 - 2

Mark Schemes for the Units

June 2009

3890-2/7890-2/MS/R/09

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, GCSEs, OCR Nationals, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2009

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone: 0870 770 6622 Facsimile: 01223 552610

E-mail: publications@ocr.org.uk

CONTENTS

Advanced GCE Mathematics (7890) Advanced GCE Pure Mathematics (7891) Advanced GCE Further Mathematics (7892)

Advanced Subsidiary GCE Mathematics (3890) Advanced Subsidiary GCE Pure Mathematics (3891) Advanced Subsidiary GCE Further Mathematics (3892)

MARK SCHEMES FOR THE UNITS

Unit/Content	Page
4721 Core Mathematics 1	1
4722 Core Mathematics 2	5
4723 Core Mathematics 3	8
4724 Core Mathematics 4	12
4725 Further Pure Mathematics 1	17
4726 Further Pure Mathematics 2	20
4727 Further Pure Mathematics 3	24
4728 Mechanics 1	30
4729 Mechanics 2	33
4730 Mechanics 3	35
4731 Mechanics 4	39
4732 Probability & Statistics 1	45
4733 Probability & Statistics 2	50
4734 Probability & Statistics 3	54
4735 Probability & Statistics 4	57
4736 Decision Mathematics 1	60
4737 Decision Mathematics 2	64
Grade Thresholds	69

1	(2)	1	D1	- 4
1	(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 5x^4 - 2x^{-3}$	B1	$5x^4$
		dx	M1	x^{-2} before differentiation or kx^{-3} in $\frac{dy}{dx}$ soi
			A1 3	$-2x^{-3}$
	(ii)	$\frac{d^2y}{dx^2} = 20x^3 + 6x^{-4}$	M1 A1 2 5	Attempt to differentiate their (i) – at least one term correct cao
2		$\frac{\left(8+\sqrt{7}\right)\left(2-\sqrt{7}\right)}{\left(2+\sqrt{7}\right)\left(2-\sqrt{7}\right)}$ $=\frac{9-6\sqrt{7}}{4-7}$	M1	Multiply numerator and denominator by conjugate
		$=\frac{9-6\sqrt{7}}{4-7}$	A1 A1	Numerator correct and simplified Denominator correct and simplified
		$= -3 + 2\sqrt{7}$	A1 4 4	cao
3	(i)	3 ⁻²	B1 1	
	(ii)	$3^{\frac{1}{3}}$	B1 1	
	(iii)	$3^{10} \times 3^{30}$ = 3^{40}	M1 A1 2	3 ³⁰ or 9 ²⁰ soi
		-3	4	
4		y = 2x - 4		
		$4x^2 + (2x - 4)^2 = 10$	M1*	Attempt to get an equation in 1 variable only
		$8x^2 - 16x + 16 = 10$		
		$8x^2 - 16x + 6 = 0$	A1	Obtain correct 3 term quadratic (aef)
		$4x^{2} - 8x + 3 = 0$ $(2x - 1)(2x - 3) = 0$		
		(2x-1)(2x-3) = 0	M1dep*	Correct method to solve quadratic of form $ax^2 + bx + c = 0 \ (b \neq 0)$ Correct factorisation oe
		$x = \frac{1}{2} , x = \frac{3}{2}$	A1	Both x values correct
		y = -3, y = -1	A1 A1 6	Both y values correct
			6	or one correct pair of values www B1 second correct pair of values B1

5	(i)	$(2x^{2}-5x-3)(x+4)$ $= 2x^{3}+8x^{2}-5x^{2}-20x-3x-12$	M1	Attempt to multiply a quadratic by a linear factor or to expand all 3 brackets with an appropriate number of terms (including an x^3
				term)
		$=2x^3+3x^2-23x-12$	A1	Expansion with no more than one incorrect term
			A1 3	term
	(ii)	$2x^4 + 7x^4$	B1	$2x^4$ or $7x^4$ soi www
		$ 2x^4 + 7x^4 \\ = 9x^4 \\ 9 $	B1 2	$9x^4$ or 9
			5	
6	(i)			
			B1	One to one graph <u>only</u> in bottom right hand quadrant
			B1 2	Correct graph, passing through origin
	(ii)	Translation	B1	
		Parallel to <i>y</i> -axis, 5 units	B1 2	
	(iii)	$y = -\sqrt{\frac{x}{2}}$	M1	$\sqrt{2x}$ or $\sqrt{\frac{x}{2}}$ seen
			A1 2	cao
	(*)	2 2		
7	(1)	$\left \left(x - \frac{5}{2} \right)^2 - \left(\frac{5}{2} \right)^2 + \frac{1}{4} \right $	B1	$a = \frac{5}{2}$ $\frac{1}{4} - a^2$
		$=\left(x-\frac{5}{2}\right)^2-6$	M1	$\frac{1}{4}-a^2$
			A1 3	cao
	(ii)	$\left(x - \frac{5}{2}\right)^2 - 6 + y^2 = 0$		
		$\left(x - \frac{5}{2}\right)^2 - \left(\frac{5}{2}\right)^2 + \frac{1}{4}$ $= \left(x - \frac{5}{2}\right)^2 - 6$ $\left(x - \frac{5}{2}\right)^2 - 6 + y^2 = 0$ $\text{Centre } \left(\frac{5}{2}, 0\right)$ $\text{Radius} = \sqrt{6}$	B1 B1	Correct x coordinate Correct y coordinate
		Radius = $\sqrt{6}$	B1 3 6	

8	(i)	-42 < 6x < -6	M1	2 equations or inequalities both dealing with all 3 terms
		-7 < x < -1	A1 A1 3	-7 and -1 seen oe -7 < x < -1 (or x > -7 and x < -1)
	(ii)	$x^2 > 16$	B1	±4 oe seen
		x > 4 or $x < -4$	B1 B1 3	$\begin{vmatrix} x > 4 \\ x < -4 \end{vmatrix}$ not wrapped, not 'and'
			6	
9	(i)	$\sqrt{(^{-}1-4)^2+(9-^{-}3)^2}$	M1	Correct method to find line length using Pythagoras' theorem
		=13	A1 2	cao
	(ii)	$\left(\frac{4+^{-}1}{2}, \frac{^{-}3+9}{2}\right)$	M1	Correct method to find midpoint
		$\left(\frac{3}{2},3\right)$	A1 2	
(i	iii)	Gradient of $AB = -\frac{12}{5}$	B1	
		5	M1	Correct equation for line, any gradient
		$y - 3 = -\frac{12}{5}(x - 1)$	A1	Correct equation for line, any gradient, through (1, 3)
		12x + 5y - 27 = 0		Correct equation in any form with gradient simplified
			A1 4 8	12x + 5y - 27 = 0
10	(i)	(3x+7)(3x-1) = 0	M1 A1	Correct method to find roots Correct factorisation oe
		$x = -\frac{7}{3}, x = \frac{1}{3}$	A1 3	Correct roots
	(ii)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 18x + 18$	M1	Attempt to differentiate y
		dx $18x + 18 = 0$	M1	Uses $\frac{\mathrm{d}y}{\mathrm{d}x} = 0$
		x = -1 $y = -16$	A1 A1 ft 4	
		y — -10		
	(iii)	y 1 -	B1	Positive quadratic curve
			B1 B1 3	y intercept (0, -7) Good graph, with correct roots indicated and
		- <u>1</u> / <u>1</u> 3c		minimum point in correct quadrant
		3		
	(iv)	<i>x</i> > -1	B1 1 11	

11	(i)	Gradient of normal = $-\frac{2}{3}$	B1	
		$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{2}kx^{-\frac{1}{2}}$	M1* A1	Attempt to differentiate equation of curve $\frac{1}{2}kx^{-\frac{1}{2}}$
		When $x = 4$, $\frac{dy}{dx} = \frac{k}{4}$	M1dep*	Attempt to substitute $x = 4$ into their $\frac{dy}{dx}$ soi
		$\therefore \frac{k}{4} = \frac{3}{2}$ $k = 6$	M1dep* A1 6	Equate their gradient expression to negative reciprocal of their gradient of normal cao
	(ii)	<i>P</i> is point (4, 12)	B1 ft	
		<i>Q</i> is point (22, 0)	M1 A1	Correct method to find coordinates of Q Correct x coordinate
		Area of triangle = $\frac{1}{2} \times 12 \times 22$	M1	Must use y coordinate of P and x coordinate of Q
		= 132 sq. units	A1 5	

1	(i) $\cos \theta = \frac{6.4^2 + 7.0^2 - 11.3^2}{2 \times 6.4 \times 7.0}$	M1		Attempt use of cosine rule (any angle)		
	= -0.4211 $\theta = 115^{\circ}$ or 2.01 rads	A1 A1	3	Obtain one of 115°, 34.2°, 30.9°, 2.01, 0.597, 0.539 Obtain 115° or 2.01 rads, or better		
	(ii) area = $\frac{1}{2} \times 7 \times 6.4 \times \sin 115$	M1		Attempt triangle area using $(\frac{1}{2})ab\sin C$, or equiv		
	$= 20.3 \text{ cm}^2$	A1	2	Obtain 20.3 (cao)		
			5			
2	(i) $a + 9d = 2(a + 3d)$	M1*		Attempt use of $a + (n-1)d$ or $a + nd$ at least once for u_4 , u_{10} or u_{20}		
	$a = 3d$ $a + 19d = 44 \Rightarrow 22d = 44$	A1 M1de	p*	Obtain $a = 3d$ (or unsimplified equiv) and $a + 19d = 44$ Attempt to eliminate one variable from two simultaneous		
	d = 2, a = 6	A1	4	equations in a and d, from u_4 , u_{10} , u_{20} and no others Obtain $d = 2$, $a = 6$		
	(ii) $S_{50} = {}^{50}/{}_2 (2x6 + 49x2)$	M1		Attempt S_{50} of AP, using correct formula, with $n = 50$,		
	= 2750	A1	2	allow 25(2a + 24d) Obtain 2750		
			6			
3	$\log 7^x = \log 2^{x+1}$	M1		Introduce logarithms throughout, or equiv with base 7 or 2		
	$x\log 7 = (x+1)\log 2$	M1		Drop power on at least one side		
	$x(\log 7 - \log 2) = \log 2$	A1 M1		Obtain correct linear equation (allow with no brackets) Either expand bracket and attempt to gather <i>x</i> terms,		
	x = 0.553	A1	5	or deal correctly with algebraic fraction Obtain $x = 0.55$, or rounding to this, with no errors seen		
			5			
4	$(\mathbf{i})(x^2 - 5)^3 = (x^2)^3 + 3(x^2)^2(-5) + 3(x^2)(-5)^2 + (-5)^3$	M1*		Attempt expansion, with product of powers of x^2 and ± 5 , at least 3 terms		
	$= x^6 - 15x^4 + 75x^2 - 125$	M1*		Use at least 3 of binomial coeffs of 1, 3, 3, 1		
		Alde _l		Obtain at least two correct terms, coeffs simplified Obtain fully correct expansion, coeffs simplified		
	OR	ΛI	7	Obtain runy correct expansion, coerts simplified		
	$(x^2 - 5)^3 = (x^2 - 5)(x^4 - 10x^2 + 25)$ = $x^6 - 15x^4 + 75x^2 - 125$	M2		Attempt full expansion of all 3 brackets Obtain at least two correct terms		
	-x - 13x + 73x - 123	A1 A1		Obtain full correct expansion		
	(ii) $\int (x^2 - 5)^3 dx = \frac{1}{7}x^7 - 3x^5 + 25x^3 - 125x + c$	M1		Attempt integration of terms of form kx^n		
		$A1\sqrt{}$		Obtain at least two correct terms, allow unsimplified coeffs		
		A1		Obtain $\frac{1}{7}x^7 - 3x^5 + 25x^3 - 125x$		
		B1	4	$+c$, and no dx or \int sign		
	8					

5 (i) $2x = 30^{\circ}, 150^{\circ}$ $x = 15^{\circ}, 75^{\circ}$

- M1 Attempt sin⁻¹ 0.5, then divide or multiply by 2
- A1 Obtain 15° (allow $^{\pi}/_{12}$ or 0.262)
- A1 3 Obtain 75° (not radians), and no extra solutions in range

(ii) $2(1-\cos^2 x) = 2 - \sqrt{3}\cos x$ $2\cos^2 x - \sqrt{3}\cos x = 0$ $\cos x (2\cos x - \sqrt{3}) = 0$ $\cos x = 0, \cos x = \frac{1}{2}\sqrt{3}$

- M1 Use $\sin^2 x = 1 \cos^2 x$ A1 Obtain $2\cos^2 x - \sqrt{3}\cos x = 0$ or equiv (no constant terms)
- M1 Attempt to solve quadratic in cosx
- A1 Obtain 30° (allow $\pi/6$ or 0524), and no extra solns in

- range
- $x = 90^{\circ}$, $x = 30^{\circ}$

- B1 5 Obtain 90° (allow $\pi/2$ or 1.57), from correct quadratic only
 - **SR** answer only B1 one correct solution
 - B1 second correct solution, and no others

8

- 6 $\int (3x^2 + a) dx = x^3 + ax + c$
- M1 Attempt to integrate
- A1 Obtain at least one correct term, allow unsimplified

 $(-1, 2) \Rightarrow -1 - a + c = 2$

- A1 Obtain $x^3 + ax$ M1 Substitute at least one of (-1, 2) or (2, 17) into integration
 - attempt involving a and c

 $(2, 17) \Rightarrow 8 + 2a + c = 17$

- Al Obtain two correct equations, allow unsimplified
- M1 Attempt to eliminate one variable from two equations in a and c

a = 2, c = 5Hence $y = x^3 + 2x + 5$

- A1 Obtain a = 2, c = 5, from correct equations
- A1 8 State $y = x^3 + 2x + 5$

8

7 (i) f(-2) = -16 + 36 - 22 - 8= -10

- M1 Attempt f(-2), or equiv
- A1 2 Obtain -10
- (ii) $f(\frac{1}{2}) = \frac{1}{4} + \frac{2}{4} + \frac{5}{2} 8 = 0$ AG
- M1 Attempt $f(\frac{1}{2})$ (no other method allowed)
 - 2 Confirm $f(\frac{1}{2}) = 0$, extra line of working required

- (iii) $f(x) = (2x-1)(x^2+5x+8)$
- At tempt complete division by (2x-1) or $(x-\frac{1}{2})$ or equiv
- A1 Obtain $x^2 + 5x + c$ or $2x^2 + 10x + c$
- 3 State $(2x-1)(x^2+5x+8)$ or $(x-\frac{1}{2})(2x^2+10x+16)$

- (iv) f(x) has one real root $(x = \frac{1}{2})$ because $b^2 - 4ac = 25 - 32 = -7$
- B1√

Α1

A1

- State 1 root, following their quotient, ignore reason
- because $b^2 4ac = 25 32 = -7$ hence quadratic has no real roots as -7 < 0,
- B1√ 2
- 2 Correct calculation, eg discriminant or quadratic formula, following their quotient, or cubic has max at (-2.15, -9.9)

 $\frac{1}{2} \times r^2 \times 1.2 = 60$ (i)

$$r = 10$$

$$r\theta = 10 \times 1.2 = 12$$

perimeter = 10 + 10 + 12 = 32 cm

Attempt ($\frac{1}{2}$) $r^2\theta = 60$ M1

A1 Obtain r = 10

B1√ State or imply arc length is 1.2r, following their r

A1 4 Obtain 32

(ii)(a)
$$u_5 = 60 \times 0.6^4$$

$$= 7.78$$

 $S_{\infty} = \frac{60}{1 - 0.6}$

= 150

Attempt u_5 using ar^4 , or list terms M1

A1 2 Obtain 7.78, or better

(b)
$$S_{10} = \frac{60(1 - 0.6^{10})}{1 - 0.6}$$

$$S_{10} = \frac{1}{1 - 0.6}$$

M1Attempt use of correct sum formula for a GP, or sum terms

2 Obtain 149, or better (allow 149.0 – 149.2 inclusive) **A**1

(c) common ratio is less than 1, so series is convergent and hence sum to infinity exists

series is convergent or -1 < r < 1 (allow r < 1) or reference to areas getting smaller / adding on less each time

Attempt
$$S_{\infty}$$
 using $\frac{a}{1-r}$

A1 **3** Obtain
$$S_{\infty} = 150$$

SR B1 only for 150 with no method shown

11

9 (i)

B1 Sketch graph showing exponential growth

(both quadrants)

Β1 2 State or imply (0, 4)

(ii) $4k^x = 20k^2$

$$k^{x} = 5k^{2}$$

$$x = \log_k 5k^2$$

$$x = \log_k 5 + \log_k k^2$$

$$x = 2\log_k k + \log_k 5$$

$$x = 2 + \log_k 5$$
 AG

Equate $4k^x$ to $20k^2$ and take logs (any, or no, base) M1

M1 Use $\log ab = \log a + \log b$

Use $\log a^b = b \log a$ M1

4 Show given answer correctly Α1

 $OR \quad 4k^x = 20k^2$

$$k^x = 5k^2$$

$$k^{x-2} = 5$$

$$x - 2 = \log_k 5$$

$$x = 2 + \log_k 5$$
 AG

M1

Attempt to rewrite as single index

Obtain $k^{x-2} = 5$ or equiv eg $4k^{x-2} = 20$ **A**1 Take logs (to any base)

M1

Show given answer correctly **A**1

(iii) (a) area $\approx \frac{1}{2} \times \frac{1}{2} \times \left(4k^0 + 8k^{\frac{1}{2}} + 4k^1\right)$

M1

Attempt y-values at x = 0, $\frac{1}{2}$ and 1, and no others

M1

Attempt to use correct trapezium rule, 3 y-values, $h = \frac{1}{2}$

 $\approx 1 + 2k^{\frac{1}{2}} + k$

A1 3 Obtain a correct expression, allow unsimplified

Equate attempt at area to 16

(b) $1+2k^{\frac{1}{2}}+k=16$

M1 M1

Attempt to solve 'disguised' 3 term quadratic

 $k^{\frac{1}{2}} = 3$

k = 9

A1 3 Obtain k = 9 only

1 (i)	State	$y = \sec x$	B1	
(ii)	State	$y = \cot x$	B1	
(iii)	State	$y = \sin^{-1} x$	B1	
				3

(iii) State
$$y = \sin^{-1} x$$

B1 3

2 Either: State or imply $\int \pi (2x-3)^4 dx$

B1 or unsimplified equiv

Obtain integral of form $k(2x-3)^5$ M1 any constant k involving π or not

Obtain $\frac{1}{10}(2x-3)^5$ or $\frac{1}{10}\pi(2x-3)^5$ A1

Attempt evaluation using 0 and $\frac{3}{2}$ M1 subtraction correct way round

Obtain $\frac{243}{10}\pi$

A1 5 or exact equiv

Or: State or imply $\int \pi (2x-3)^4 dx$

Expand and obtain integral of order 5 M1 with at least three terms correct

Ob'n $\frac{16}{5}x^5 - 24x^4 + 72x^3 - 108x^2 + 81x$ A1 with or without π

Attempt evaluation using (0 and) $\frac{3}{2}$ M1

Obtain $\frac{243}{10}\pi$

A1 (5) or exact equiv

3 (i)	Attempt use of identity for $\sec^2 \alpha$	M1	using $\pm \tan^2 \alpha \pm 1$
	Obtain $1 + (m+2)^2 - (1+m^2)$	A1	absent brackets implied by subsequent
	Obtain $4m + 4 = 16$ and hence $m = 3$	A1 3	correct working

(ii) Attempt subn in identity for
$$\tan(\alpha + \beta)$$
 M1 using $\frac{\pm \tan \alpha \pm \tan \beta}{1 \pm \tan \alpha \tan \beta}$

Obtain $\frac{5+3}{1-15}$ or $\frac{m+2+m}{1-m(m+2)}$ A1 $\sqrt{ }$ following their m

Obtain $-\frac{4}{3}$ A1 3 or exact equiv

Cotain	7	111 3	or exact equiv
		6	
		٧	

4 (i)	Obtain $\frac{1}{3}e^{3x} + e^x$	B1	
	Substitute to obtain $\frac{1}{3}e^{9a} + e^{3a} - \frac{1}{3}e^{3a} - e^a$	B1	or equiv
	Equate definite integral to 100 and		
	attempt rearrangement	M1	as far as $e^{9a} =$
	Introduce natural logarithm	M1	using correct process
	Obtain $a = \frac{1}{9} \ln(300 + 3e^a - 2e^{3a})$	A1 5	AG; necessary detail needed
(ii)	Obtain correct first iterate	B1	allow for 4 dp rounded or truncated
	Show correct iteration process	M1	with at least one more step
	Obtain at least three correct iterates in all	Λ1	allowing recovery after error

Obtain at least three correct iterates in all A1 allowing recovery after error

Obtain
$$0.6309$$
 A1 4 following at least three correct steps; answer required to exactly 4 dp

$$[0.6 \rightarrow 0.631269 \rightarrow 0.630884 \rightarrow 0.630889]$$

5 (i)	Either: Show correct process for comp'n Obtain $y = 3(3x+7)-2$	M1 A1		correct way round and in terms of x or equiv
	Obtain $x = -\frac{19}{9}$	A1	3	or exact equiv; condone absence of $y = 0$
	Or: Use $fg(x) = 0$ to obtain $g(x) = \frac{2}{3}$	B1		
	Attempt solution of $g(x) = \frac{2}{3}$	M1		
	Obtain $x = -\frac{19}{9}$	A 1	(3)	or exact equiv; condone absence of $y = 0$
(ii)	Attempt formation of one of the equations			
	$3x+7 = \frac{x-7}{3}$ or $3x+7 = x$ or $\frac{x-7}{3} = x$	M1		or equiv
	Obtain $x = -\frac{7}{2}$	A1		or equiv
	Obtain $y = -\frac{7}{2}$	Al۱	3	or equiv; following their value of x
(iii)	Attempt solution of modulus equation	M1		squaring both sides to obtain 3-term quadratics or forming linear equation with signs of 3x different on each side
	Obtain $-12x + 4 = 42x + 49$ or $3x - 2 = -3x - 7$	A1		or equiv
	Obtain $x = -\frac{5}{6}$	A1		or exact equiv; as final answer
	Obtain $y = \frac{9}{2}$	A1	4	or equiv; and no other pair of answers
	$y = \frac{1}{2}$		10	or equity, and no other pair of answers
6 (i)	Obtain derivative $k(37+10y-2y^2)^{-\frac{1}{2}}f(y)$	M1		any constant k ; any linear function for f
	Obtain $\frac{1}{2}(10-4y)(37+10y-2y^2)^{-\frac{1}{2}}$	A1	2	or equiv
	dr			
(ii)	Either: Sub'te $y = 3$ in expression for $\frac{dx}{dy}$	*M1		
	Take reciprocal of expression/value	*M1		and without change of sign
	Obtain -7 for gradient of tangent	A1		
	Attempt equation of tangent	M1	_	dep *M *M
	Obtain $y = -7x + 52$	ΑI	3	and no second equation
	Or: Sub'te $y = 3$ in expression for $\frac{dx}{dy}$	M1		
	Attempt formation of eq'n $x = m'y + c$	M1		where m' is attempt at $\frac{dx}{dy}$
	Obtain $x - 7 = -\frac{1}{7}(y - 3)$	A1		or equiv
	Attempt rearrangement to required form			
	Obtain $y = -7x + 52$	A1	(5) 7	and no second equation

7 (i)	State $R = 10$ Attempt to find value of α	B1 M1	or equiv implied by correct answer or its complement; allow sin/cos muddles
	Obtain 36.9 or $\tan^{-1} \frac{3}{4}$	A1 3	or greater accuracy 36.8699
(ii)(a)	Show correct process for finding one angle Obtain (64.16 + 36.87 and hence) 101 Show correct process for finding second	A1	or greater accuracy 101.027
	angle Obtain (115.84 + 36.87 and hence) 153	M1 A1√ 4	following their value of α ; or greater accuracy 152.711; and no other between 0 and 360
(b)	Recognise link with part (i)	M1	signalled by 40 20
	Use fact that maximum and minimum values of sine are 1 and -1 Obtain 60	M1 A1 3	may be implied; or equiv
8 (i)	Refer to translation and stretch	M1	in either order; allow here equiv informal terms such as 'move',
	State translation in x direction by 6 State stretch in y direction by 2 [SC: if M0 but one transformation complete		or equiv; now with correct terminology or equiv; now with correct terminology
(ii)	State $2\ln(x-6) = \ln x$	B1	or $2\ln(a-6) = \ln a$ or equiv
(11)	Show correct use of logarithm property Attempt solution of 3-term quadratic	*M1 M1	dep *M
	Obtain 9 only	A1 4	following correct solution of equation
(iii)	Attempt evaluation of form $k(y_0 + 4y_1 + y_2)$) M1	any constant k ; maybe with $y_0 = 0$ implied
	Obtain $\frac{1}{3} \times 1(2 \ln 1 + 8 \ln 2 + 2 \ln 3)$	A1	or equiv
	Obtain 2.58	A1 3	or greater accuracy 2.5808
9 (a)	Attempt use of quotient rule	*M1	or equiv; allow numerator wrong way round and denominator errors
	Obtain $\frac{(kx^2 + 1)2kx - (kx^2 - 1)2kx}{(kx^2 + 1)^2}$	A1	or equiv; with absent brackets implied by
		A 1	subsequent correct working
	Obtain correct simplified numerator $4kx$ Equate numerator of first derivative to zero State $x = 0$ or refer to $4kx$ being linear or	A1 M1	dep *M
	observe that, with $k \neq 0$, only one sol'n	A1√ 5	AG or equiv; following numerator of form $k'kx = 0$, any constant k'

(b)	Attempt use of product rule	*M1	
	Obtain $me^{mx}(x^2 + mx) + e^{mx}(2x + m)$	A1	or equiv
	Equate to zero and either factorise with		
	factor e^{mx} or divide through by e^{mx}	M1	dep *M
	Obtain $mx^2 + (m^2 + 2)x + m = 0$ or equiv		
	and observe that e^{mx} cannot be zero	A1	
	Attempt use of discriminant	M1	using correct $b^2 - 4ac$ with their a, b, c
	Simplify to obtain $m^4 + 4$	A1	or equiv

Simplify to obtain $m^4 + 4$ Al or equiv Observe that this is positive for all m and hence two roots Al 7 or equiv; AG

1 Long Division For leading term $3x^2$ in quotient B1

Suff evid of div process (ax^2 , mult back, attempt sub) M1

 $(Quotient) = 3x^2 - 4x - 5$ A1

(Remainder) = -x + 2 A1

<u>Identity</u> $3x^4 - x^3 - 3x^2 - 14x - 8 = Q(x^2 + x + 2) + R$ *M1

 $Q = ax^2 + bx + c$, R = dx + e & attempt ≥ 3 ops. dep*M1 If a = 3, this $\Rightarrow 1$ operation

a = 3, b = -4, c = -5 A1 dep*M1; $Q = ax^2 + bx + c$

d = -1, e = 2

Inspection Use 'Identity' method; if R = e, check cf(x) correct before awarding 2^{nd} M1

4

2 Indefinite Integral Attempt to connect $dx \& d\theta$ *M1 Incl $\frac{dx}{d\theta}$ or $\frac{d\theta}{dx}$; not $dx = d\theta$

Reduce to $\int 1 - \tan^2 \theta \, (d\theta)$ A1 A0 if $\frac{d\theta}{dx} = \sec^2 \theta$; but allow all following

A marks

Use $\tan^2 \theta = (1,-1) + (\sec^2 \theta, -\sec^2 \theta)$ dep*M1

Produce $\int 2 - \sec^2 \theta \, (d\theta)$ A1

Correct $\sqrt{\text{integration of function of type }} d + e \sec^2 \theta \qquad \sqrt{\text{A1}} \qquad \text{including } d = 0$

EITHER Attempt limits change (allow degrees here) M1 (This is 'limits' aspect; the

OR Attempt integ, re-subst & use original ($\sqrt{3}$,1) integ need not be accurate)

 $\frac{1}{6}\pi - \sqrt{3} + 1$ isw Exact answer required A1

3 (i)
$$\left(1 + \frac{x}{a}\right)^{-2} = 1 + \left(-2\right)\frac{x}{a} + \frac{-2 - 3}{2}\left(\frac{x}{a}\right)^2 + \dots$$

M1 Check 3rd term; accept
$$\frac{x^2}{a}$$

$$= 1 - \frac{2x}{a} + \dots \quad \text{or} \quad 1 + \left(-\frac{2x}{a}\right)$$

B1 or
$$1 - 2xa^{-1}$$
 (Ind of M1)

... +
$$\frac{3x^2}{a^2}$$
 + ...

... +
$$\frac{3x^2}{a^2}$$
 + ... (or $3(\frac{x}{a})^2$ or $3x^2a^{-2}$)

A1 Accept
$$\frac{6}{2}$$
 for 3

$$(a+x)^{-2} = \frac{1}{a^2} \left\{ \text{their expansion of } \left(1 + \frac{x}{a}\right)^{-2} \right\} \text{ mult out } \sqrt{A1 \ 4} \ \frac{1}{a^2} - \frac{2x}{a^3} + \frac{3x^2}{a^4} \text{; accept eg } a^{-2}$$

$$\sqrt{A1} \ \frac{1}{a^2} - \frac{2x}{a^3} + \frac{3x^2}{a^4}$$
; accept eg a^{-2}

- (ii) Mult out (1-x) (their exp) to produce all terms/cfs(x^2)
- M1 Ignore other terms

Produce
$$\frac{3}{a^2} + \frac{2}{a} (= 0)$$
 or $\frac{3}{a^4} + \frac{2}{a^3} (= 0)$ or AEF

- Accept x^2 if in both terms **A**1
- $a = -\frac{3}{2}$ www seen anywhere in (i) or (ii)
- Disregard any ref to a = 0A1 3

7

B1

- 4 (i) Differentiate as a product, u dv + v du
- M1or as 2 separate products

$$\frac{d}{dx}(\sin 2x) = 2\cos 2x$$
 or $\frac{d}{dx}(\cos 2x) = -2\sin 2x$

$$e^{x}(2\cos 2x + 4\sin 2x) + e^{x}(\sin 2x - 2\cos 2x)$$

Simplify to $5 e^x \sin 2x$ www A1 4 Accept $10e^x \sin x \cos x$

(ii) Provided result (i) is of form $k e^x \sin 2x$, $k \cos x$

$$\int e^x \sin 2x \, dx = \frac{1}{k} e^x \left(\sin 2x - 2 \cos 2x \right)$$

$$\left[e^{x}\left(\sin 2x - 2\cos 2x\right)\right]_{0}^{\frac{1}{4}\pi} = e^{\frac{1}{4}\pi} + 2$$

$$\frac{1}{5}\left(e^{\frac{1}{4}\pi}+2\right)$$

B1 **3** Exact form to be seen

SR Although 'Hence', award M2 for double integration by parts and solving + A1 for correct answer.

5 (i)
$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$$
 aef used

M1

$$=\frac{4t+3t^2}{2+2t}$$

A1

Attempt to find *t* from one/both equations

M1 or diff (ii) cartesian eqn \rightarrow M1

State/imply t = -3 is only solution of both equations

A1 subst (3,-9), solve for $\frac{dy}{dx} \rightarrow M1$

Gradient of curve =
$$-\frac{15}{4}$$
 or $\frac{-15}{4}$ or $\frac{15}{-4}$

A1 5 grad of curve = $-\frac{15}{4} \rightarrow A1$

[SR If t = 1 is given as solution & not disqualified, award A0 + $\sqrt{A1}$ for grad = $-\frac{15}{4}$ & $\frac{7}{4}$;

If t = 1 is given/used as only solution, award A0 + $\sqrt{A1}$ for grad = $\frac{7}{4}$]

(ii)
$$\frac{y}{x} = t$$

В1

Substitute into either parametric eqn

M1

Final answer $x^3 = 2xy + y^2$

A2 **4**

[SR Any correct unsimplified form (involving fractions or common factors) \rightarrow A1]

9

6 (i)
$$4x = A(x-3)^2 + B(x-3)(x-5) + C(x-5)$$

M1

A = 5

A1 'cover-up' rule, award B1

B = -5

A1

C = -6

A1 4 'cover-up' rule, award B1

Cands adopting other alg. manip. may be awarded M1 for a full satis method + 3 @ A1

(ii) $\int \frac{A}{x-5} dx = A \ln(5-x) \text{ or } A \ln|5-x| \text{ or } A \ln|x-5|$

 $\sqrt{B1}$ but $\underline{\text{not}} A \ln(x-5)$

 $\int \frac{B}{x^2} dx = B \ln(3-x) \text{ or } B \ln|3-x| \text{ or } B \ln|x-3|$ $\sqrt{B1}$ but $\underline{\text{not}} B \ln(x-3)$

If candidate is awarded B0,B0, then award SR $\sqrt{B1}$ for $A \ln(x-5)$ and $B \ln(x-3)$

 $\int \frac{C}{(x-3)^2} dx = -\frac{C}{x-3}$ √B1

 $5 \ln \frac{3}{4} + 5 \ln 2$ aef, isw $\sqrt{A \ln \frac{3}{4}} - B \ln 2$ √ B1 Allow if SR B1 awarded

 $\sqrt{\frac{1}{2}}C$ √B1 **5** -3

9 [Mark at earliest correct stage & isw; no ln 1]

7 (i) Attempt scalar prod $\{\mathbf{u}.(4\mathbf{i} + \mathbf{k}) \text{ or } \mathbf{u}.(4\mathbf{i} + 3\mathbf{j} + 2\mathbf{k})\} = 0$ M1 where \mathbf{u} is the given vector

Obtain
$$\frac{12}{13} + c = 0$$
 or $\frac{12}{13} + 3b + 2c = 0$ A1

$$c = -\frac{12}{13}$$
 A1

$$b = \frac{4}{13}$$
 A1 cao No ft

Evaluate
$$\left(\frac{3}{13}\right)^2 + (\text{their } b)^2 + (\text{their } c)^2$$
 M1 Ignore non-mention of $\sqrt{}$

Obtain
$$\frac{9}{169} + \frac{144}{169} + \frac{16}{169} = 1$$
 AG A1 **6** Ignore non-mention of $\sqrt{}$

.....

(ii) Use
$$\cos \theta = \frac{x \cdot y}{|x||y|}$$
 M1

Correct method for finding scalar product M1

36° (35.837653...) Accept 0.625 (rad) A1 3 From
$$\frac{18}{\sqrt{17}\sqrt{29}}$$

SR If $4\mathbf{i}+\mathbf{k} = (4,1,0)$ in (i) & (ii), mark as scheme but allow final A1 for $31^{\circ}(31.160968)$ or 0.544

9

8 (i)
$$\frac{d}{dx}(y^2) = 2y\frac{dy}{dx}$$
 B1

$$\frac{d}{dx}(uv) = u \, dv + v \, du \quad \text{used on } (-7)xy$$
 M1

$$\frac{d}{dx}(14x^2 - 7xy + y^2) = 28x - 7x\frac{dy}{dx} - 7y + 2y\frac{dy}{dx} \quad A1 \quad (=0)$$

$$2y\frac{dy}{dx} - 7x\frac{dy}{dx} = 7y - 28x \rightarrow \frac{dy}{dx} = \frac{28x - 7y}{7x - 2y}$$
 www AG A1 4 As AG, intermed step nec

(ii) Subst x = 1 into eqn curve & solve quadratic eqn in y M1 (y = 3 or 4)

Subst
$$x = 1$$
 and (one of) their y-value(s) into given $\frac{dy}{dx}$ M1 $\left(\frac{dy}{dx} = 7 \text{ or } 0\right)$

Find eqn of tgt, with their $\frac{dy}{dx}$, going through (1, their y) *M1 using (one of) y value(s)

Produce either y = 7x - 4 or y = 4

Solve simultaneously their two equations dep*M1 provided they have two

Produce $x = \frac{8}{7}$ A1 6

9 (i) $\frac{20}{k_1}$ (seconds)

B1 1

(ii) $\frac{\mathrm{d}\theta}{\mathrm{d}t} = -k_2 \left(\theta - 20\right)$

B1 **1**

(iii) Separate variables or invert each side

M1 Correct eqn or very similar

Correct int of each side (+c)

A1,A1 for each integration

Subst $\theta = 60$ when t = 0 into eqn containing 'c'

M1 or $\theta = 60$ when $t = \text{their } (\mathbf{i})$

 $c \text{ (or } -c) = \ln 40 \text{ or } \frac{1}{k_2} \ln 40 \text{ or } \frac{1}{k_2} \ln 40 k_2$

A1 Check carefully their 'c'

Subst their value of c and $\theta = 40$ back into equation

M1 Use scheme on LHS

 $t = \frac{1}{k_2} \ln 2$

A1 Ignore scheme on LHS

Total time = $\frac{1}{k_2} \ln 2 + \text{their (i)}$

√A1 **8**

SR If the negative sign is omitted in part (ii), allow all marks in (iii) with $\ln 2$ replaced by $\ln \frac{1}{2}$.

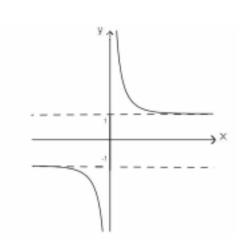
(seconds)

SR If definite integrals used, allow M1 for eqn where t = 0 and $\theta = 60$ correspond; a second M1 for eqn where t = t and $\theta = 40$ correspond & M1 for correct use of limits. Final answer scores 2.

4725 Further Pure Mathematics 1

M1 Subtract	rect value of S_{250} or S_{100} $S_{250} - S_{100}$ (or S_{101} or S_{99})
	5250 5100 (51 5101 51 599)
984390625 - 25502500 = 958888125 A1 3 Obtain co	orrect exact answer
3	
	pair of simultaneous
M1 equations	
a = -3, b = 2 A1 A1 4 Attempt	
	orrect answers.
3. (i) 11 – 29i B1 B1 2 Correct r	real and imaginary parts
	real and imaginary parts
4	
4. Either $p + q = -1, pq = -8$ B1 Both value	ues stated or used
p+q B1 Correct e	overagion goon
$\frac{p+q}{pq}$ B1 Correct e	expression seen
M1 Use their	r values in their expression
	orrect answer
$-\frac{8}{8}$	orrect answer
B1 Substitut	te $x = \frac{1}{u}$ and use new
Or $\frac{1}{n} + \frac{1}{n} = 8$	••
quadratic	
p+q=1 B1 Correct v	value stated
7 M1 Use their	r values in given expression
	orrect answer
	orrect answer
Or $\frac{-1 \pm \sqrt{33}}{2}$ M1 Find root equation	ts of given quadratic
Or $\frac{1\pm\sqrt{33}}{2}$ WI Find root equation	
_ _ _	values seen
	r values in given expression
Al Obtain co	orrect answer
	n substitution and rearrange
A1 Obtain co	orrect expression, or
equivaler	nt
$u^3 - 25u^2 - 70u - 49 = 0$ A1 3 Obtain co	orrect final answer
	0.1.1.0.1 min min m 01
(ii) M1 Use coef	ficient of <i>u</i> of their cubic or
	connecting the symmetric
	s and substitute values from
given equ	uation
-70 A1 ft 2 Obtain co	orrect answer
5	

6.	(i) 2 \(\sigma \) 7 \(\tau \) 150 \(\tau \) 150	B1 B1	2	State correct answers
0.	(i) $3\sqrt{2}, -\frac{\pi}{4} \text{ or } -45^{\circ} \text{ AEF}$	DIDI		State correct answers
	(')()	DIDI		
	(ii)(a)	B1B1 B1 ft	3	Circle, centre $(3, -3)$, through O ft for $(\pm 3, \pm 3)$ only
	(ii)(b)	B1 II		` ' '
	(11)(0)	B1	3	Straight line with +ve slope, through (3, -3) or their centre
		B1		Half line only starting at centre
	(iii)	B1ft		Area above horizontal through <i>a</i> ,
		B1ft	2	below (ii) (b)
		B1ft	3 11	Outside circle
7.	(i)	M1	11	Show that terms cancel in pairs
		A1	2	Obtain given answer correctly
	an.			
	(ii)	M1		Attempt to expand and simplify
		A1	2	Obtain given answer correctly
	(iii)	B1 B1		Correct $\sum r$ stated $\sum 1 = n$
	()			Correct $\sum_{i} r$ stated $\sum_{i} 1 - n$
				Consider sum of 4 separate terms on
		M1*		RHS
		*DM1		Required sum is LHS – 3 terms
	$(n+1)^4 - 1 - n(n+1)(2n+1) - 2n(n+1) - n$	A1		Correct unsimplified expression
	(n+1) 1 $n(n+1)(2n+1)$ $2n(n+1)$ n			r · · · · · · · · · · · · · · · · · · ·
	$\sum_{i=1}^{n} a_i a_i a_i a_i$			
	$4\sum_{n=1}^{n} r^3 = n^2 (n+1)^2$	A1	6	Obtain given answer correctly
	<i>r</i> =1		10	
8.	(i)	B1		Find coordinates (0, 0) (3, 1) (2, 1)
		B1		(5, 2) found
	(4)	B1	3	Accurate diagram sketched
	(ii) $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$	B1 B1	2	Each column correct
	(1 1)	וטוטו		Lucii columni correct
	(iii) Either	B1		Correct inverse for their (ii) stated
	$\begin{pmatrix} 1 & 2 \end{pmatrix}$	M1		Post multiply C by inverse of (ii)
	$\begin{pmatrix} 0 & 1 \end{pmatrix}$	A 1.02		Commont an arran form 1
		A1ft		Correct answer found
	Or	M1		Set up 4 equations for elements from
				correct matrix multiplication
		A2ft		All elements correct, -1 each error
		B1		Shear
		B1		Shear, <i>x</i> axis invariant or parallel to <i>x</i> -axis
		B1	6	eg image of $(1, 1)$ is $(3, 1)$
			11	SR allow s.f. 2 or shearing angle of
				correct angle to appropriate axis


		,		
9.	$\begin{vmatrix} a & 1 & 1 & 1 & 1 & a \end{vmatrix}$	M1		Correct expansion process shown
	(i) $a \begin{vmatrix} a & 1 \\ 1 & 2 \end{vmatrix} - \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} + \begin{vmatrix} 1 & a \\ 1 & 1 \end{vmatrix}$	A1		Obtain correct unsimplified
	$\begin{vmatrix} 1 & 2 \end{vmatrix} \begin{vmatrix} 1 & 2 \end{vmatrix} \begin{vmatrix} 1 & 1 \end{vmatrix}$			expression
	$2a^{2}-2a$	A1	3	*
				Obtain correct answer
	(ii)	M1		
	a = 0 or 1	A1ft		Equate their det to 0
	u - 0 or 1	A1ft	3	Obtain correct answers, ft solving a
		AII	3	quadratic
				quadratic
	(:::) (-)	B1 B1		Equations consistent, but non unique
	(iii) (a)	DIDI		solutions
	(1.)	B1		
	(b)		4	Correct equations seen &
		B1	4	inconsistent, no solutions
			10	
10.	i)	M1		Attempt to find next 2 terms
	$u_2 = 7 \ u_3 = 19$	A1		Obtain correct answers
		A1	3	Show given result correctly
	(ii)	M1		Expression involving a power of 3
	$u_n = 2(3^{n-1}) + 1$	A1	2	Obtain correct answer
	(iii)	B1ft		Verify result true when $n = 1$ or $n = 2$
		M1		Expression for u_{n+1} using recurrence
	$u_{n+1} = 3(2(3^{n-1})+1)-2$			relation
	······································	A1		Correct unsimplified answer
	$u_{n+1} = 2(3^n) + 1$	A1		Correct answer in correct form
	$m_{n+1} = (3) \cdot 1$	B1		Statement of induction conclusion
		<i>D</i> 1	5	Satisfiest of madelion conclusion
			10	
			10	

4726 Further Pure Mathematics 2

1(i)	Attempt area = $\pm \Sigma(0.3y)$ for at least three <i>y</i> values	M1	May be implied
	Get 1.313(1) or 1.314	A 1	Or greater accuracy
(ii)	Attempt ± sum of areas (4 or 5 values) Get 0.518(4)	M1 A1	May be implied Or greater accuracy SC If answers only seen, 1.313(1) or 1.314 B2 0.518(4) B2 -1.313(1) or -1.314 B1 -0.518(4) B1
	Or Attempt answer to part (i)—final rectangle Get 0.518(4)	M1 A1	
(iii)	Decrease width of strips	B1	Use more strips or equivalent
2	Attempt to set up quadratic in x Get $x^2(y-1) - x(2y+1) + (y-1) = 0$	M1 A1	Must be quadratic; = 0 may be implied
	Use $b^2 \ge 4ac$ for real x on their quadratic Clearly solve to AG	M1 A1	Allow =,>,<, \leq here; may be implied If other (in)equalities used, the step to AG must be clear SC Reasonable attempt to diff. using prod/quot rule M1 Solve correct dy/dx=0 to get $x=-1, y=\frac{1}{4}$ A1 Attempt to justify inequality e.g. graph or to show $d^2y/dx^2>0$ M1 Clearly solve to AG A1
3(i)	Reasonable attempt at chain rule Reasonable attempt at product/quotient rule Correctly get f'(0) =1	M1 M1 A1	Product in answer Sum of two parts
	Correctly get $f''(0) = 1$	A1	SC Use of $lny = sinx$ follows same scheme
(ii)	Reasonable attempt at Maclaurin with their values	M1	In $af(0) + bf'(0)x + cf''(0)x^2$
	Get $1 + x + \frac{1}{2}x^2$	A1√	From their f(0), f'(0), f"(0) in a correct Maclaurin; all non-zero terms
4	Attempt to divide out.	M1	Or $A+B/(x-2)+(Cx(+D))/(x^2+4)$; allow $A=1$ and/or $B=1$ quoted
	Get x^3 = $A(x-2)(x^2+4)+B(x^2+4)+(Cx+D)(x-2)$	M1	Allow $\sqrt{\text{mark from their Part Fract}}$; allow $D=0$ but not $C=0$
	State/derive/quote <i>A</i> =1 Use <i>x</i> values and/or equate coeff	A1 M1	To potentially get all their constants

	Get <i>B</i> =1, <i>C</i> =1, <i>D</i> =-2	A1 A1	For one other correct from cwo For all correct from cwo
5(i)	Derive/quote $d\theta=2dt/(1+t^2)$ Replace their $\cos \theta$ and their $d\theta$, both in terms of t Clearly get $\int (1-t^2)/(1+t^2) dt$ or equiv Attempt to divide out Clearly get/derive AG	B1 M1 A1 M1 A1	May be implied Not $d\theta = dt$ Accept limits of t quoted here Or use AG to get answer above SC Derive $d\theta = 2\cos^2 \frac{1}{2}\theta dt$ B1 Replace $\cos\theta$ in terms of half-angles and their $d\theta \neq dt$ M1 Get $\int 2\cos^2 \frac{1}{2}\theta - 1 dt$ or $\int 1 - \frac{1}{2}\cos^2 \frac{1}{2}\theta \cdot \frac{2}{1+t^2} dt$ A1 Use $\sec^2 \frac{1}{2}\theta = 1 + t^2$ M1 Clearly get/derive AG A1
(ii)	Integrate to $a tan^{-1}bt - t$ Get $\frac{1}{2}\pi - 1$	M1 A1	
6	Get $k \sinh^{-1}k_1x$ Get $\frac{1}{3} \sinh^{-1}\frac{3}{4}x$ Get $\frac{1}{2} \sinh^{-1}\frac{3}{4}x$ Use limits in their answers Attempt to use correct ln laws to set up a solvable equation in a	M1 A1 A1 M1	For either integral; allow attempt at ln version here Or ln version Or ln version
	Get $a = 2^{\frac{1}{3}} \cdot 3^{\frac{1}{2}}$	A1	Or equivalent

7(i)

- B1 *y*-axis asymptote; equation may be implied if clear
- B1 Shape
- B1 $y=\pm 1$ asymptotes; may be implied if seen as on graph

(ii) Reasonable attempt at product rule, giving two terms

Use correct Newton-Raphson at least once with their f'(x) to produce an x_2

Get $x_2 = 2.0651$ Get $x_3 = 2.0653$, $x_4 = 2.0653$

(iii) Clearly derive $\coth x = \frac{1}{2}x$

Attempt to find second root e.g. symmetry $Get \pm 2.0653$

- **8(i)** (a) Get $\frac{1}{2}$ ($e^{\ln a} + e^{-\ln a}$) Use $e^{\ln a} = a$ and $e^{-\ln a} = \frac{1}{a}$ Clearly derive AG
 - **(b)** Reasonable attempt to multiply out their attempts at exponential definitions of cosh and sinh
 Correct expansion seen as e^(x+y) etc.
 Clearly tidy to AG
- (ii) Use x = y and $\cosh 0 = 1$ to get AG
- Attempt to eliminate R (or a) to set up a solvable equation in a (or R)

Get $a = \frac{3}{2}$ (or R = 12) Replace for a (or R) in relevant equation to set up solvable equation in R (or a) Get R=12 (or $a=\frac{3}{2}$)

Attempt to expand and equate coefficients

(iv) Quote/derive $(\ln^3/_2, 12)$

(iii)

9(i) Use $\sin\theta . \sin^{n-1}\theta$ and parts

M1

M1

A1√

M1 M1

A1

B1

M1

- A1√ One correct at any stage if reasonable A1 cao; or greater accuracy which rounds
- B1 AG; allow derivation from AG Two roots only

May be implied

 \pm their iteration in part (ii)

M1 4 terms in each

A1 With $e^{-(x-y)}$ seen or implied

M1 $(13 = R \cosh \ln a = R(a^2+1)/2a$ $5 = R \sinh \ln a = R(a^2-1)/2a)$

M1 SC If exponential definitions used, $8e^x + 18e^{-x} = Re^x/a + Rae^{-x}$ and same scheme follows A1

A1 Ignore if $a=^2/_3$ also given

B1 $\sqrt{}$ On their *R* and *a* B1 $\sqrt{}$

M1 Reasonable attempt with 2 parts, one yet to be integrated

	Get $-\cos\theta.\sin^{n-1}\theta + (n-1)\int\sin^{n-2}\theta.\cos^2\theta \ d\theta$	A1	Signs need to be carefully considered
	Replace $\cos^2 = 1 - \sin^2 \theta$	M1	
	Clearly use limits and get AG	A 1	
(**)	(-) Solve for -0 for 4 look and 0	N (1	0 1 4 1
(ii)	(a) Solve for $r=0$ for at least one θ Get $(\theta) = 0$ and π	M1 A1	θ need not be correct Ignore extra answers out of range
	Get (b) b and h	711	ignore extra answers out or range
		B1	General shape (symmetry stated or
			approximately seen)
	()		
		B1	Tangents at θ =0, π and max r seen
	θ= 0		
	(b) Correct formula used; correct <i>r</i>	M1	May be $\int r^2 d\theta$ with correct limits
	Use $6I_6 = 5I_4$, $4I_4 = 3I_2$	M1	At least one
	Attempt I_0 (or I_2) Replace their values to get I_6	M1 M1	$(I_0 = \frac{1}{2}\pi)$
	Get $5\pi/32$	A1	
	Use symmetry to get $5\pi/32$	A1	May be implied but correct use of limits must be given somewhere in answer
	Or		
	Correct formula used; correct <i>r</i>	M1	
	Reasonable attempt at formula		
	$(2i\sin\theta)^6 = (z - \frac{1}{z})^6$	M1	
	Attempt to multiply out both sides (7 terms)	M1	
	Get correct expansion	A1	
	Convert to trig. equivalent and integrate their		
	expression	M1	cwo
	Get $5\pi/32$	A1	
	Or		
	Correct formula used; correct r	M1	
	Use double-angle formula and attempt to		
	cube (4 terms)	M1	
	Get correct expression Reasonable attempt to put $\cos^2 2\theta$ into	A1	
	integrable form and integrate	M1	
	Reasonable attempt to integrate	1711	
	$\cos^3 2\theta$ as e.g. $\cos^2 2\theta$. $\cos 2\theta$	M1	cwo
	Get $5\pi/32$	A1	

4727 Further Pure Mathematics 3

1		$\left(\frac{1}{2}\sqrt{3} + \frac{1}{2}i\right)^{\frac{1}{3}} = \left(\cos\frac{1}{6}\pi + i\sin\frac{1}{6}\pi\right)^{\frac{1}{3}}$	B1	For arg $z = \frac{1}{6}\pi$ seen or implied
		$=\cos\frac{1}{18}\pi+i\sin\frac{1}{18}\pi,$	M1	For dividing arg z by 3
		$\cos\frac{13}{18}\pi + i\sin\frac{13}{18}\pi,$	A1	For any one correct root
		$\cos \frac{25}{18}\pi + i \sin \frac{25}{18}\pi$	A1 4	For 2 other roots and no more in range 0 ,, $\theta < 2\pi$
		16 16	4	
2	(i)	$\frac{1}{5}e^{-\frac{1}{3}\pi i}$	B1 1	For stating correct inverse in the form $re^{i\theta}$
	(ii)	$r_1 e^{i\theta} \times r_2 e^{i\phi} = r_1 r_2 e^{i(\theta + \phi)}$	M1 A1 2	For stating 2 distinct elements multiplied For showing product of correct form
	(iii)	$Z^2 = e^{2i\gamma}$	B1	For $e^{2i\gamma}$ seen or implied
		$\Rightarrow e^{2i\gamma-2\pi i}$	B1 2	For correct answer. aef
			5	
3	(i)	$[6-4\lambda, -7+8\lambda, -10+7\lambda]$ on p $\Rightarrow 3(6-4\lambda)-4(-7+8\lambda)-2(-10+7\lambda)=8$	B1 M1	For point on l seen or implied For substituting into equation of p
		$\Rightarrow \lambda = 1 \Rightarrow (2, 1, -3)$	A1 3	For correct point. Allow position vector
((ii)	METHOD 1		
		$\mathbf{n} = [-4, 8, 7] \times [3, -4, -2]$	M1* M1 (*dep)	For direction of l and normal of p seen For attempting to find $\mathbf{n}_1 \times \mathbf{n}_2$
		$\mathbf{n} = k[12, 13, -8]$	Al	For correct vector
		(2,1,-3) OR $(6,-7,-10)$	M1	For finding scalar product of their point on l with their attempt at \mathbf{n} , or equivalent
		$\Rightarrow 12x + 13y - 8z = 61$	A1 5	For correct equation, aef cartesian
		METHOD 2		
		$\mathbf{r} = [2, 1, -3] OR [6, -7, -10]$	M1 A1√	For stating eqtn of plane in parametric form (may be implied by next stage), using $[2, 1, -3]$ (ft from
		$+\lambda[-4, 8, 7] + \mu[3, -4, -2]$	211 V	(i) Or $[6, -7, -10]$, \mathbf{n}_1 and \mathbf{n}_2 (as above)
		$x = 2 - 4\lambda + 3\mu$	M1	For writing as 3 linear equations
		$y = 1 + 8\lambda - 4\mu$	M1	For attempting to eliminate λ and μ
		$z = -3 + 7\lambda - 2\mu$	A 1	
		$\Rightarrow 12x + 13y - 8z = 61$ METHOD 3	A1	For correct equation aef cartesian
		$3(6+3\mu)-4(-7-4\mu)-2(-10-2\mu)=8$	M1	For finding foot of perpendicular from point on l to p
		$\Rightarrow \mu = -2 \Rightarrow (0, 1, -6)$	A1	For correct point or position vector
		From 3 points $(2, 1, -3)$, $(6, -7, -10)$, $(0, -7, -10)$		The state of the s
		n = vector product of 2 of [2, 0, 3], [6, -8, -4], [-4, 8, 7]	M1	Use vector product of 2 vectors in plane
		$\Rightarrow \mathbf{n} = k[12, 13, -8]$		
		(2,1,-3) OR $(6,-7,-10)$	M1	For finding scalar product of their point on l with their attempt at \mathbf{n} , or equivalent
		$\Rightarrow 12x + 13y - 8z = 61$	A1	For correct equation aef cartesian
			8	

4 (i)	IF $e^{\int \frac{1}{1-x^2} dx} = e^{\frac{1}{2} \ln \frac{1+x}{1-x}} = \left(\frac{1+x}{1-x}\right)^{\frac{1}{2}}$	M1 A1 2	For IF stated or implied. Allow $\pm \int$ and omission of dx For integration and simplification to AG (intermediate step must be seen)
(ii)	$\frac{\mathrm{d}}{\mathrm{d}x} \left(y \left(\frac{1+x}{1-x} \right)^{\frac{1}{2}} \right) = (1+x)^{\frac{1}{2}}$	M1*	For multiplying both sides by IF
	$y\left(\frac{1+x}{1-x}\right)^{\frac{1}{2}} = \frac{2}{3}(1+x)^{\frac{3}{2}} + c$	M1	For integrating RHS to $k(1+x)^n$
	$y\left(\frac{1-x}{1-x}\right) = \frac{2}{3}(1+x)^2 + c$	A 1	For correct equation (including $+ c$)
	$(0, 2) \Rightarrow 2 = \frac{2}{3} + c \Rightarrow c = \frac{4}{3}$	M1 (*dep) M1 (*dep)	In either order: For substituting $(0, 2)$ into their GS (including $+c$) For dividing solution through by IF, including dividing c or their numerical value for c
	$y = \frac{2}{3}(1+x)(1-x)^{\frac{1}{2}} + \frac{4}{3}\left(\frac{1-x}{1+x}\right)^{\frac{1}{2}}$	A1 6	For correct solution aef (even unsimplified) in form $y = f(x)$
		8	
5 (i)	$m^2 - 6m + 9 (= 0) \Rightarrow m = 3$	M1 A1	For attempting to solve correct auxiliary equation For correct <i>m</i>
	$CF = (A + Bx)e^{3x}$	A1 3	For correct CF
(ii)	ke^{3x} and kxe^{3x} both appear in CF	B1 1	For correct statement
(iii)	$y = kx^2 e^{3x} \implies y' = 2kxe^{3x} + 3kx^2 e^{3x}$	M1 A1	For differentiating kx^2e^{3x} twice For correct y' aef
	$\Rightarrow y'' = 2ke^{3x} + 12kxe^{3x} + 9kx^2e^{3x}$	A 1	For correct y" aef
	$\Rightarrow ke^{3x} \left(2 + 12x + 9x^2 - 12x - 18x^2 + 9x^2 \right) = e^{3x}$	M1	For substituting y'' , y' , y into DE
	$\Rightarrow k = \frac{1}{2}$	A1 5	For correct k
	-	9	

6 (i)	METHOD 1	M1	For attempting to find vector product of the pair of
	$\mathbf{n}_1 = [1, 1, 0] \times [1, -5, -2]$	1711	direction vectors
	=[-2, 2, -6] = k[1, -1, 3]	A1	For correct \mathbf{n}_1
	Use (2, 2, 1)	M1	For substituting a point into equation
	\Rightarrow r .[-2, 2, -6] = -6 \Rightarrow r .[1, -1, 3] = 3	A1 4	For correct equation. aef in this form
	METHOD 2		
	$x = 2 + \lambda + \mu$	M1	For writing as 3 linear equations
	$y = 2 + \lambda - 5\mu$	M1	For attempting to eliminate λ and μ
	$z = 1$ -2μ	A 1	
	$\Rightarrow x - y + 3z = 3$	A1	For correct cartesian equation
····	\Rightarrow r .[1, -1, 3] = 3	A1	For correct equation. aef in this form
(ii)	For $\mathbf{r} = \mathbf{a} + t\mathbf{b}$		
	METHOD 1 $\mathbf{b} = [1, -1, 3] \times [7, 17, -3]$	M1	For attempting to find $\mathbf{n}_1 \times \mathbf{n}_2$
	= k[2, -1, -1]	A1√	For a correct vector. It from \mathbf{n}_1 in (i)
			•
	e.g. x , y or $z = 0$ in $\begin{cases} x - y + 3z = 3 \\ 7x + 17y - 3z = 21 \end{cases}$	M1	For attempting to find a point on the line
	\Rightarrow a = $\left[0, \frac{3}{2}, \frac{3}{2}\right]$ OR $\left[3, 0, 0\right]$ OR $\left[1, 1, 1\right]$	A1√	For a correct vector. ft from equation in (i)
	[5, 2, 2]		SR a correct vector may be stated without working
	Line is (e.g.) $\mathbf{r} = [1, 1, 1] + t[2, -1, -1]$	A1√ 5	For stating equation of line ft from \mathbf{a} and \mathbf{b} \mathbf{SR} for $\mathbf{a} = [2, 2, 1]$ stated award M0
	METHOD 2		
	$\int_{Solve} \int x - y + 3z = 3$		In either order:
	Solve $\begin{cases} x - y + 3z = 3\\ 7x + 17y - 3z = 21 \end{cases}$	M1	For attempting to solve equations
	by eliminating one variable (e.g. z)		
	Use parameter for another variable (e.g. x) to find other variables in terms of t	M1	For attempting to find parametric solution
		A1√	For correct expression for one variable
	(eg) $y = \frac{3}{2} - \frac{1}{2}t$, $z = \frac{3}{2} - \frac{1}{2}t$	A1√	For correct expression for the other variable
			ft from equation in (i) for both
	Line is (eg) $\mathbf{r} = \left[0, \frac{3}{2}, \frac{3}{2}\right] + t[2, -1, -1]$	A 1√	For stating equation of line. ft from parametric solutions
	METHOD 3		
	eg x, y or $z = 0$ in $\begin{cases} x - y + 3z = 3 \\ 7x + 17y - 3z = 21 \end{cases}$	M1	For attempting to find a point on the line
	$\Rightarrow \mathbf{a} = \left[0, \frac{3}{2}, \frac{3}{2}\right] OR \left[3, 0, 0\right] OR \left[1, 1, 1\right]$	A 1√	For a correct vector. ft from equation in (i) SR a correct vector may be stated without working SR for a = [2, 2, 1] stated award M0
	eg [3, 0, 0]-[1, 1, 1]	M1	For finding another point on the line and using it with the one already found to find b
	$\mathbf{b} = k[2, -1, -1]$	A1	For a correct vector. ft from equation in (i)
	Line is (eg) $\mathbf{r} = [1, 1, 1] + t[2, -1, -1]$	A 1√	For stating equation of line. ft from a and b

6 (ii)	METHOD 4			
	A point on Π_1 is	M1		For using parametric form for Π_1
	$[2+\lambda+\mu,2+\lambda-5\mu,1-2\mu]$	1011		and substituting into Π_2
	On Π ₂ ⇒			
	$[2+\lambda+\mu, 2+\lambda-5\mu, 1-2\mu] \cdot [7, 17, -3] = 21$	A1		For correct unsimplified equation
	$\Rightarrow \lambda - 3\mu = -1$	A1		For correct equation
	Line is (e.g.) $\mathbf{r} = [2, 2, 1] + (3\mu - 1)[1, 1, 0] + \mu[1, -5, -2]$	M1		For substituting into Π_1 for λ or μ
	\Rightarrow r = [1, 1, 1] or $\left[\frac{7}{3}, \frac{1}{3}, \frac{1}{3}\right] + t [2, -1, -1]$	A 1		For stating equation of line
		9	9	
7 (i)	$\cos 3\theta + i\sin 3\theta = c^3 + 3ic^2s - 3cs^2 - is^3$	M1		For using de Moivre with $n = 3$
	$\Rightarrow \cos 3\theta = c^3 - 3cs^2$ and	A1		For both expressions in this form (seen or implied)
	$\sin 3\theta = 3c^2s - s^3$			SR For expressions found without de Moivre M0 A0
	$\Rightarrow \tan 3\theta = \frac{3c^2s - s^3}{c^3 - 3cs^2}$	M1		For expressing $\frac{\sin 3\theta}{\cos 3\theta}$ in terms of c and s
	$\tan 3\theta = \frac{3\tan\theta - \tan^3\theta}{1 - 3\tan^2\theta} = \frac{\tan\theta (3 - \tan^2\theta)}{1 - 3\tan^2\theta}$	A1	4	For simplifying to AG
(ii) (a)	$\theta = \frac{1}{12}\pi \Rightarrow \tan 3\theta = 1$			
	$\Rightarrow 1 - 3t^2 = t(3 - t^2) \Rightarrow$	В1	1	For both stages correct AG
	$t^3 - 3t^2 - 3t + 1 = 0$			
(b)	$t - 3t - 3t + 1 = 0$ $(t+1)(t^2 - 4t + 1) = 0$	M1		For attempt to factorise cubic
. ,	(l+1)(l-4l+1)=0	A1		For correct factors
	$\Rightarrow (t=-1), \ t=2\pm\sqrt{3}$	A 1		For correct roots of quadratic
	- sign for smaller root $⇒$	A 1	4	For choice of – sign and correct root AG
	$\tan\frac{1}{12}\pi = 2 - \sqrt{3}$			
(iii)	$dt = (1+t^2) d\theta$	В1		For differentiation of substitution
	$dt = (1 + t^{-}) d\theta$	Di		and use of $\sec^2 \theta = 1 + \tan^2 \theta$
	$\Rightarrow \int_0^{\frac{1}{12}\pi} \tan 3\theta d\theta$	B1		For integral with correct θ limits seen
	$= \left[\frac{1}{3}\ln\left(\sec 3\theta\right)\right]_0^{\frac{1}{12}\pi} = \frac{1}{3}\ln\left(\sec \frac{1}{4}\pi\right)$	M1		For integrating to $k \ln(\sec 3\theta)$ OR $k \ln(\cos 3\theta)$
	11 /2 11 2	M1		For substituting limits
	$=\frac{1}{3}\ln\sqrt{2}=\frac{1}{6}\ln 2$			and $\sec \frac{1}{4}\pi = \sqrt{2}$ OR $\cos \frac{1}{4}\pi = \frac{1}{\sqrt{2}}$ seen
		A1	5	For correct answer aef
		14	4	

8 (i)	$a^2 = (ap)^2 = apap \implies a = pap$	В1		For use of given properties to obtain AG
	$p^2 = (ap)^2 = apap \implies p = apa$	B1	2	For use of given properties to obtain AG SR allow working from AG to obtain relevant properties
(ii)	$\left(p^2\right)^2 = p^4 = e \implies \text{order } p^2 = 2$	B1		For correct order with no incorrect working seen
	$\left(a^2\right)^2 = \left(p^2\right)^2 = e \implies \text{order } a = 4$	B1		For correct order with no incorrect working seen
	$(ap)^4 = a^4 = e \implies \text{order } ap = 4$	B1		For correct order with no incorrect working seen
	$\left(ap^2\right)^2 = ap^2ap^2 = ap \cdot a \cdot p = a^2$	M1		For relevant use of (i) or given properties
	$OR \ ap^2 = a \cdot a^2 = a^3 \Rightarrow$ $\left(ap^2\right)^2 = a^6 = a^2$	A1	5	For correct order with no incorrect working seen
	\Rightarrow order $ap^2 = 4$			
(iii)	METHOD 1 $p^2 = a^2, \ ap^2 = a^3$	M2		For use of the given properties to simplify p^2 and ap^2
	$\Rightarrow \{e, a, p^2, ap^2\} = \{e, a, a^2, a^3\}$	A1		For obtaining a^2 and a^3
	which is a cyclic group	A1	4	For justifying that the set is a group
	METHOD 2 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 A1		For attempting closure with all 9 non-trivial products seen For all 16 products correct
	Completed table is a cyclic group	B2		For justifying that the set is a group
	METHOD 3 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 A1		For attempting closure with all 9 non-trivial products seen For all 16 products correct
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
		B1		For stating identity
	Inverses exist since			
	EITHER: e is in each row/column OR: p^2 is self-inverse; a , ap^2 form an inverse pair	B1		For justifying inverses ($e^{-1} = e$ may be assumed)

(iv)	METHOD 1 e.g. $a \cdot ap = a^2 p = p^3$ $ap \cdot a = p$ commutative	M1 M1 B1 A1 4	For attempting to find a non-commutative pair of elements, at least one involving <i>a</i> (may be embedded in a full or partial table) For simplifying elements both ways round For a correct pair of non-commutative elements For stating <i>Q</i> non-commutative, with a clear argument
	METHOD 2 Assume commutativity, so (eg) $ap = pa$	M1	For setting up proof by contradiction
	(i) \Rightarrow $p = ap.a \Rightarrow p = pa.a = pa^2 = pp^2 = p^3$	M1	For using (i) and/or given properties
	But p and p^3 are distinct	B1	For obtaining and stating a contradiction
	$\Rightarrow Q$ is non-commutative	A1	For stating Q non-commutative, with a clear argument
		15	

4728 Mechanics 1

1 i	$x^{2} + (3x)^{2} = 6^{2}$ $10x^{2} = 36$ $x = 1.9(0) (1.8973)$	M1 A1 A1 [3]	Using Pythagoras, 2 squared terms May be implied Not surd form unless rationalised $(3\sqrt{10})/5$, $(6\sqrt{10})/10$
ii	$\tan \theta = 3x/x \ (= 3 \times 1.9/1.9) = 3$ $\theta = 71.6^{\circ} \qquad (71.565)$	M1 A2 [3]	Must target correct angle. Accept $\sin \theta = 3 \times 1.9/6$ or $\cos \theta = 1.9/6$ which give $\theta = 71.8^{\circ}$, $\theta = 71.5^{\circ}$ respectively, A1. SR $\theta = 71.6^{\circ}$ from $\tan \theta = 3x/x$ if x is incorrect; x used A1, no evidence of x used A2
2 i		B1 B1 [2]	Inverted V shape with straight lines. Starts at origin, ends on <i>t</i> -axis, or horizontal axis if no labelling evident
ii	6 = 3v/2 $v = 4 \text{ ms}^{-1}$	M1 A1 A1 [3]	Not awarded if special (right angled, isosceles) triangle assumed, or $s = (u+v)t/2$, or max v at specific t .
iii	T accn = $4/2.4$ or s accn = $16/(2x2.4)$ T accn = $12/3$ s or s accn = $10/3$ Deceleration = $4/(3 - 12/3)$ or $16/2(6-10/3)$ Deceleration = 3 ms^{-2}	M1* A1 D*M1 A1 [4]	Uses $t = v/a$ or $s = v^2/2a$. May be implied Accept $4/(3 - 1.67)$ or $16/2(6-3.33)$ Accept 3.01; award however $v = 4$ obtained in (ii). $a = -3$ gets A0.
3 i	0.8gsin30 0.8x0.2 $0.8 \times 9.8sin30 - T = 0.8x0.2$ T = 3.76 N AG	B1 B1 M1 A1 [4]	Not for 3.92 stated without justification Or 0.16 Uses N2L // to slope, 3 non-zero terms, inc ma Not awarded if initial B1 withheld.
ii	$3.76 - F = 3 \times 0.2$ $F = 3.16$ $3.16 = \mu x 3 \times 9.8$ $\mu = 0.107 (0.10748)$	M1 A1 A1 M1 A1 [5]	Uses N2L, B alone, 3 non-zero terms Needs <i>correct value</i> of T . May be implied. Uses $F = \mu R$ (Accept with $R = 3$, but not with $R = 0.8g(\cos 30)$, $F = 0.6$, $F = 3.76$, $F = f(\max P)$) Not 0.11, 0.108 (unless it comes from using g=9.81 consistently through question.

	1 2 52 2 2 2 1	3.61	1 1 2 2 2 4 4 5 7 2 2 4 2
4 i	$v^2 = 7^2 - 2 \times 9.8 \times 2.1$	M1	Uses $v^2 = u^2 - 2gs$. Accept $7^2 = u^2 + 2gs$
	$v = 2.8 \text{ ms}^{-1}$	A1	
		A1	
		[3]	
ii	v = 0	B1	Velocity = 0 at greatest height
	$0^2 = 7^2 - 2 \times 9.8s$	M1	Uses $0 = u^2 - 2gs$. Accept $7^2 = 2 \times 9.8s$.
	s = 2.5 m	A1	
		[3]	
iii	v = -5.7 (or $t = 0.71$ oef to reach greatest	B1	Allows for change of direction
	height)	M1	Uses $v = u + \text{or} - gt$.
	-5.7 = 7 - 9.8t or $5.7 = (0+) 9.8T$	A1	Not 1.29 unless obtained from g=9.81
	t = 1.3(0) s (1.2959)	[3]	consistently
5 i	$0.5 \times 6 = 0.5v + m(v+1)$	M1	Uses CoLM. Includes g throughout MR-1
	3 = 0.5v + mv + m	A1	
	v(m+0.5) = -m+3 AG	A1	
		[3]	
		[-]	
ii	Momentum before = $\pm -(4m - 0.5 \times 2)$	B1	Includes g throughout MR-1
	$+/- (4m - 0.5 \times 2) = mv + 0.5(v+1)$	M1	Needs opposite directions in CoLM on
	$4m - 0.5 \times 2 = mv + 0.5(v+1)$	A1	"before" side only.
	v(m+0.5) = 4m - 1.5	A1	RHS in format am + b or b + am. Ignore
	V(M + 0.5) 1M 1.5	[4]	values for a and b if quoted.
		[.]	various for a and o if quoted.
iii	4m - 1.5 = -m + 3	M1	Attempts to obtain eqn in 1 variable from
""	5m = 4.5	1411	answers in (i) and (ii)
	m = 0.9 kg AG	A1	Ignore $m = -0.5$ if seen
	$0.9 + v(0.9 + 0.5) = 3 \text{ or } 4 \times 0.9 - 1.5 =$	M1	Substitutes for $m=0.9$ in any m , v equation
	v(0.9+0.5)	1,11	obtained earlier.
	v = (3-0.9)/(0.9+0.5) = 2.1/1.4		obtained carrier.
	$v = 1.5 \text{ ms}^{-1}$	A1	
	V 1.5 III5	[4]	
		[ד]	
6 ia	Perp = 10cos20 (= 9.3967 or 9.4)	B1	Includes g, MR -1 in part (i). Accept –ve
O Id	$// = 10\sin 20 (= 3.4202)$	B1	values.
	// 103III20 (3.7202)	[2]	varaos.
b	$\mu = 10\sin 20/10\cos 20 = \tan 20 \ (= 3.42/9.4)$	M1	Must use $ E = \mu D $
	$\mu = 10\sin 20/10\cos 20 = \tan 20 (-3.42/9.4)$ $\mu = 0.364 (0.36397)$ AG	A1	Must use $ F = \mu R $ Accept after inclusion of g twice
	$\mu = 0.304 (0.30397)$ AG		Accept after inclusion of g twice
		[2]	
ii	No misread, and resolving of 10 and T	M1*	3 term equation perp plane, 2 unknowns
11	required	A1	9.4 + 0.707 <i>T</i> (accept 9.4+.71 <i>T</i>)
	$R = 10\cos 20 + T\cos 45$	M1*	3 term equation // plane, 2 unknowns
	1 1000320 100343	A1	0.707 <i>T</i> - 3.42 (accept 0.71 <i>T</i> - 3.4)
	$F = T\cos 45 - 10\sin 20 \text{ or } T\cos 45 = \mu R +$	D*M1	Substitutes for F and R in F =0.364 R
	$F = 1\cos 43 - 10\sin 20 \text{ of } 1\cos 43 - \mu R + 10\sin 20$	A1	Substitutes for T and R III T = 0.304R
		AI	
	$T\cos 45 - 3.42 = 0.364(9.4 + T\cos 45)$	Λ 1	Award final Al only for T = 140 M of an aring
1	0.707T - 3.42 = 3.42 + 0.257T	A1	Award final A1 only for $T = 149$ N after using
1	0.45T = 6.84	[7]	10g for weight
	T = 15.2 N (15.209)	[7]	
		1	

7 i	$a = dv/dt$ $a = 6 - 2t \text{ ms}^{-2}$	M1 A1 [2]	Differentiation attempt. Answer 6- <i>t</i> implies division by <i>t</i>
ii	$s = \int vdt$ $s = \int 6t - t^2 dt$ $s = 3 t^2 - t^3/3 (+c)$ $t = 0, v = 0, c = 0$ $t = 3, s = 3x3^2 - 3^3/3$ $s = 18 \text{ m}$ AG	M1* A1 B1 D*M1 A1 [5]	Integration attempt on <i>v</i> Award if limits 0,3 used Requires earlier integration Does not require B1 to be earned.
iii	Distance remaining (= $100 - 18$) = 82 Total time = $3 + 82/9$ T = 12.1 s ($12 1/9$)	B1 M1 A1 [3]	Numerator not 100 Not 109/9
iv	Distance before slows = $18 + (22 - 3)x9$ Distance while decelerating = $200 - 189 = 11$ $11 = 9t - 0.3t^2$ or $11 = (9+8.23)t/2$ or $8.23 = 9-0.6t$ t = 1.28 (1.2765, accept 1.3) T = 23.3 s (23.276)	M1* A1 D*M1 A1 D*M1 A1 A1 A1 A1	(=189 m) Two sub-regions considered Accept 10.99. 10.9 penalise -1PA. Uses $s = ut - 0.5 \times 0.6t^2$, or $v^2 = u^2 - 2 \times 0.6s$ with $s = (u+v)t/2$ or $v = u + at$ Finds t . (If QE, it must have 3 terms and smaller positive root chosen.)

4729 Mechanics 2

1 (i)	$\frac{1}{2} \times 75 \times 12^2$ or $\frac{1}{2} \times$	75×3^2 (either KE)	B1	$M1 \ 12^2 = 3^2 + 2a \times 180$	
	75×9.8×40	(PE)	B1	A1 $a = 0.375$ (3/8)	
	$R \times 180$ (change in 6	energy = 24337)	B1	M1 $75 \times 9.8 \times \sin\theta - R = 75a$	
	$\frac{1}{2} \times 75 \times 12^2 = \frac{1}{2} \times 75 \times 3$	$^{2}+75\times9.8\times40-R\times180$	M1	A1 $R = 135$	
	R = 135 N		A1 5	(max 4 for no energy)	5

2 (i)	$R = F = P/v = 44\ 000/v = 1400$	M1	
	$v = 31.4 \text{ m s}^{-1}$	A1 2	
(ii)	$44\ 000/v = 1400 + 1100 \times 9.8 \times 0.05$	M1	must have g
		A1	
	$v = 22.7 \text{ m s}^{-1}$	A1 3	
(iii)	22 000/10 + 1100×9.8×0.05 – 1400	M1	
	= 1100a	A 1	8
	$a = 1.22 \text{ m s}^{-2}$	A1 3	8

3 (i)	$\cos\theta = 5/13 \text{ or } \sin\theta = 12/13 \text{ or } \theta = 67.4^{\circ}$	B1	any one of these
		M1	moments about A (ok without 70)
	$0.5 \times F \sin\theta = 70 \times 1.4 + 50 \times 2.8$	A1	$0.5\sin\theta = 0.4615$
	F = 516 N	A1 4	SR 1 for 303 (omission of beam)
(ii)	$F \sin\theta = 120 + Y$ (resolving vertically)	M1	M1/A1 for moments
	Y = 356 their F × 12/13 – 120	A1 🗸	(B)Y×2.8+1.4×70=2.3×516 ×12/13
	$X = F\cos\theta$ (resolving horizontally)	M1	(C) $0.5 \times Y = 0.9 \times 70 + 2.3 \times 50$
	$X = 198$ their $F \times 5/13$	A1 /	(D) $1.2X = 1.4 \times 70 + 2.8 \times 50$
	Force = $\sqrt{(356^2 + 198^2)}$	M1	
	407 or 408 N	A1 6	10

4 (i)	$T = 0.4 \times 0.6 \times 2^2$	M1	
	T = 0.96 N	A1 2	
(ii)	S-T	B1	may be implied
	$S-T=0.1\times0.3\times2^2$	M1	
		A1	
	S = 1.08	A1 4	
(iii)	$v = r\omega$	M1	
	$v_P = 0.6$	A1	
	$v_B = 1.2$	A1	
	$\frac{1}{2} \times 0.1 \times 0.6^2 + \frac{1}{2} \times 0.4 \times 1.2^2$	M1	(0.018 + 0.288) separate speeds
	0.306	A1 5	11

5 (i)	$d = (2 \times 6 \sin \pi/4)/3\pi/4$	M1	must be correct formula with rads
	d = 3.60	A1 2	AG
(ii)	$d \cos 45^\circ = 2.55$	B1	
			may be implied
	$5\bar{x} = 3 \times 3 + 2 \times \text{``2.55''}$	M1	moments must not have areas
		A1	
	$\overline{x} = 2.82$	A1	2kg/3kg misread (swap) gives
	$5 \ \overline{y} = 3 \times 6 + 2 \times (12 + \text{``2.55''})$	M1	$(2.73,11.13) \theta = 21.7^{\circ}$
		A1	(MR - 2) $(max 7 for (ii) + (iii))$
	$\overline{y} = 9.42$	A1	SR -1 for \overline{x} , \overline{y} swap
		7	
(iii)	$\tan\theta = 2.82/8.58$	M1	M0 for their \bar{x} / \bar{y}
	$\theta = 18.2^{\circ}$	A1 2	f their $\overline{x}/(18 - \overline{y})$

6 (i)	$I = 0.9 = 6 \times 0.2 - v \times 0.2$	M1	needs to be mass 0.2	
		A1		
	v = 1.5	A1 3		
(ii)	0.6 = (c - b)/6	M1	restitution (allow 1.5 for M1)	
		A1		
	$6 \times 0.2 = 0.2b + 0.1c$	M1	momentum (allow 1.5 for M1)	
		A 1		
	b = 2.8	A 1		
	$0.4 \times 5 + 0.2 \times 1.5 = 0.4a + 0.2 \times 6$ or	M1	1st collision (needs their 1.5 for M1)	
	$I = 0.9 = -0.4a0.4 \times 5$	A 1		
	a = 2.75	A1		
	2.75 < 2.8	M1	compare v 's of A and B (calculated)	
	no further collision	A1 10		13

7(i)	$9 = 17\cos 25^{\circ} \times t$	M1	B1 $y=x\tan\theta-4.9x^2/v^2\cos^2\theta$
	$t = 0.584$ (or $9/17\cos 25^{\circ}$)	A1	M1/A1 y =9tan(-25°)-4.9×9 ² /17 ² cos ² 25°
	$d = 17\sin 25^{\circ} \times 0.584 + \frac{1}{2} \times 9.8x \times 0.584^{2} $ (d	M1	
	$= ht \log (5.87)$	A1	A1 $y = -5.87$
	h = 2.13	A1 5	2.13
(ii)	$v_h = 17\cos 25^{\circ}$ (15.4)	B1	M1/A1 dy/dx =
	$v_v = 17\sin 25^\circ + 9.8 \times 0.584$ or	M1	$\tan\theta - 9.8x/v^2\cos^2\theta$
	$v_v^2 = (17\sin 25^\circ)^2 + 2 \times 9.8 \times 5.87$		
	$v_v = 12.9$	A1	A1 $dy/dx = -0.838$
	$\tan\theta = 12.9/15.4$	M1	M1 tan ⁻¹ (838)
	$\theta = 40.0^{\circ}$ below horizontal	A1 5	or 50.0° to vertical
(iii)	speed = $\sqrt{(12.9^2 + 15.4^2)}$	M1	(20.1)
		A1 🗸	
	$1/2mv^2 = 1/2m \times 20.1^2 \times 0.7$	M1	NB 0.3 instead of 0.7 gives 11.0 (M0)
	$v = 16.8 \text{ m s}^{-1}$	A1 4	14

4730 Mechanics 3

1 i	Horiz. comp. of vel. after impact is 4ms ⁻¹	B1	May be implied
	Vert. comp. of vel. after impact is $\sqrt{5^2 - 4^2} = 3 \text{ms}^{-1}$	B1	AG
	$\sqrt{5^2 - 4^2} = 3 \text{ms}$ Coefficient of restitution is 0.5	B1	From e = 3/6
		[3]	
ii	Direction is vertically upwards	B1	
	Change of velocity is 3 – (-6) Impulse has magnitude 2.7Ns	M1 A1	From $m(\Delta v) = 0.3 \times 9$
		[3]	
2 i	Horizontal component is 14N	B1	
		M1	For taking moments for AB about A or B or the midpoint of AB
	$80 \times 1.5 = 14 \times 1.5 + 3Y$ or	1411	of the imapoint of 71B
	$3(80 - Y) = 80 \times 1.5 + 14 \times 1.5$ or	A 1	
	$1.5(80 - Y) = 14 \times 0.75 + 14 \times 0.75 + 1.5Y$ Vertical component is 33N upwards	A1 A1	AG
		[4]	
ii	Horizontal component at C is 14N	B1	May be implied
	[Vertical component at C is	M1	for using $R^2 = H^2 + V^2$
	$(\pm)\sqrt{50^2-14^2}$	DM1 A1	For resolving forces at C vertically
	$[W = (\pm)48 - 33]$ Weight is 15N	[4]	
3 i		M1	For using the p.c.mmtm parallel to l.o.c.
	$4 \times 3\cos 60^{\circ} - 2 \times 3\cos 60^{\circ} = 2b$	A1	
	b = 1.5 j component of vel. of $B = (-)3\sin 60^{\circ}$	A1 B1ft	ft consistent sin/cos mix
	$[v^2 = b^2 + (-3\sin 60^\circ)^2]$	M1	For using $v^2 = b^2 + v_y^2$
	Speed (3ms ⁻¹) is unchanged	A1ft	AG ft - allow same answer following
	[Angle with l.o.c. = $\tan^{-1}(3\sin 60^{\circ}/1.5)$]	M1	consistent sin/cos mix.
	Angle is 60° .	A1ft [8]	For using angle = $tan^{-1}(\pm v_y/v_x)$ ft consistent sin/cos mix
ii	$[e(3\cos 60^{\circ} + 3\cos 60^{\circ}) = 1.5]$	M1	For using NEL
	Coefficient is 0.5	A1ft [2]	ft - allow same answer following consistent sin/cos mix throughout.
		[-]	

4 i	$F - 0.25v^{2} = 120v(dv/dx)$ $F = 8000/v$ $[32000 - v^{3} = 480v^{2}(dv/dx)]$ $\frac{480v^{2}}{v^{3} - 32000} \frac{dv}{dx} = -1$	M1 A1 B1 M1 A1 [5]	For using Newton's second law with $a = v(dv/dx)$ For substituting for F and multiplying throughout by $4v$ (or equivalent) AG
ii	$\int \frac{480v^2}{v^3 - 32000} dv = -\int dx$ $160 \ln(v^3 - 32000) = -x (+A)$ $160 \ln(v^3 - 32000) = -x + 160 \ln 32000$ or $160 \ln(v^3 - 32000) - 160 \ln 32000 = -500$ $(v^3 - 32000)/32000 = e^{-x/160}$ Speed of m/c is 32.2ms^{-1}	M1 A1 M1 A1ft B1ft B1 [6]	For separating variables and integrating For using $v(0) = 40$ or $[160 \ln(v^3 - 32000)]^v_{40} = [-x]^{500}_0$ ft where factor 160 is incorrect but +ve, Implied by $(v^3 - 32000)/32000 = e^{-3.125}$ (or = 0.0439). ft where factor 160 is incorrect but +ve, or for an incorrect non-zero value of A
5 i	$x_{\text{max}} = \sqrt{1.5^2 + 2^2} - 1.5 (= 1)$ $[T_{\text{max}} = 18 \times 1/1.5]$ Maximum tension is 12N	B1 M1 A1 [3]	For using $T = \lambda x/L$
	(a) Gain in EE = $2[18(1^2 - 0.2^2)]/(2 \times 1.5)$ (11.52) Loss in GPE = 2.8mg (27.44m)	M1 A1 B1	For using EE = $\lambda x^2/2L$ May be scored with correct EE terms in expressions for total energy on release and total energy at lowest point May be scored with correct GPE terms in expressions for total energy on release and total energy at lowest point
ii	[2.8 $m \times 9.8 = 11.52$] m = 0.42 (b) $\frac{1}{2}mv^2 = mg(0.8) + 2 \times 18 \times 0.2^2/(2 \times 1.5)$ or $\frac{1}{2}mv^2 = 2 \times 18 \times 1^2/(2 \times 1.5) - mg(2)$ Speed at M is 4.24ms ⁻¹	M1 A1 [5] M1 A1ft A1ft [3]	For using the p.c.energy AG For using the p.c.energy KE, PE & EE must all be represented ft only when just one string is considered throughout in evaluating EE ft only for answer 4.10 following consideration of only one string

	T	1	
6 i	$[-mg \sin \theta = m L(d^2 \theta/dt^2)]$ $d^2 \theta/dt^2 = -(g/L)\sin \theta$	M1 A1 [2]	For using Newton's second law tangentially with $a = Ld^2 \theta/dt^2$ AG
ii	$\begin{bmatrix} d^2 \theta / dt^2 = -(g/L) \ \theta \end{bmatrix}$ $d^2 \theta / dt^2 = -(g/L) \ \theta \implies \text{motion is SH}$	M1 A1 [2]	For using $\sin \theta \approx \theta$ because θ is small $(\theta_{\text{max}} = 0.05)$ AG
iii	$[4\pi/7 = 2\pi/\sqrt{9.8/L}]$ $L = 0.8$	M1 A1 [2]	For using $T = 2\pi/n$ where $-n^2$ is coefficient of θ
iv	$[\theta = 0.05\cos 3.5 \times 0.7]$ $\theta = -0.0385$ $t = 1.10 \text{ (accept 1.1 or 1.09)}$	M1 A1ft M1 A1ft [4]	For using $\theta = \theta_0 \cos nt \ \{\theta = \theta_0 \sin nt \text{ not accepted unless the } t \text{ is reconciled with the } t \text{ as defined in the question} \}$ ft incorrect $L \ \{\theta = 0.05 \cos[4.9/(5L)^{\frac{1}{2}}]\}$ For attempting to find 3.5t $(\pi < 3.5t < 1.5\pi)$ for which $0.05 \cos 3.5t = \text{answer}$ found for θ or for using $3.5(t_1 + t_2) = 2\pi$ ft incorrect $L \ \{t = [2\pi (5L)^{\frac{1}{2}}]/7 - 0.7\}$
V	$\dot{\theta}^{2} = 3.5^{2}(0.05^{2} - (-0.0385)^{2}) \text{ or } \\ \dot{\theta} = -3.5 \times 0.05 \sin (3.5 \times 0.7) (\dot{\theta} = -0.1116) \\ \text{Speed is } 0.0893 \text{ms}^{-1} \\ \text{(Accept answers correct to 2 s.f.)}$	M1 A1ft A1ft [3]	For using $\dot{\theta}^2 = n^2(\theta_o^2 - \theta^2)$ or $\dot{\theta} = -n \theta_o \sin nt$ {also allow $\dot{\theta} = n \theta_o \cos nt$ if $\theta = \theta_o \sin nt$ has been used previously} ft incorrect θ with or without 3.5 represented by $(g/L)^{\frac{1}{2}}$ using incorrect L in (iii) or for $\dot{\theta} = 3.5 \times 0.05 \cos(3.5 \times 0.7)$ following previous use of $\theta = \theta_o \sin nt$ ft incorrect L ($L \times 0.089287/0.8$ with $n = 3.5$ used or from $ 0.35 \sin\{4.9/[5L]^{\frac{1}{2}}\}/[5L]^{\frac{1}{2}} $ SR for candidates who use $\dot{\theta}$ as v . (Max 1/3) For $v = \pm 0.112$ B1

7 i	Gain in PE = $mga(1 - \cos\theta)$ $[\frac{1}{2}mu^2 - \frac{1}{2}mv^2 = mga(1 - \cos\theta)]$ $v^2 = u^2 - 2ga(1 - \cos\theta)$ $[R - mg\cos\theta = m(\text{accel.})]$ $R = mv^2/a + mg\cos\theta$ $[R = m\{u^2 - 2ga(1 - \cos\theta)\}/a + mg\cos\theta]$	B1 M1 A1 M1 A1 M1	For using KE loss = PE gain For using Newton's second law radially For substituting for v^2
ii	$R = mu^{2}/a + mg(3\cos\theta - 2)$ $[0 = mu^{2}/a - 5mg]$ $u^{2} = 5ag$ $[v^{2} = 5ag - 4ag]$ Least value of v^{2} is ag	M1 A1 M1 A1 M1 A1 [4]	For substituting $R = 0$ and $\theta = 180^{\circ}$ For substituting for u^{2} (= 5 ag) and $\theta = 180^{\circ}$ in v^{2} (expression found in (i)) { but M0 if $v = 0$ has been used to find u^{2} } AG
iii	$[0 = u^{2} - 2ga(1 - \sqrt{3}/2)]$ $u^{2} = ag(2 - \sqrt{3})$	M1 A1 [2]	For substituting $v^2 = 0$ and $\theta = \pi/6$ in v^2 (expression found in (i)) Accept $u^2 = 2ag(1 - \cos \pi/6)$

4731 Mechanics 4

1 (i)	Using $\omega_2^2 = \omega_1^2 + 2\alpha\theta$, $67^2 = 83^2 + 2\alpha \times 1000$	M1	
	$\alpha = -1.2$	A1	
	Angular deceleration is 1.2 rad s ⁻²	[2]	
(ii)	Using $\theta = \omega_1 t + \frac{1}{2} \alpha t^2$,	M1	
	$400 = 83t - 0.6t^2$	A1ft	
	$t = 5 \ or \ 133\frac{1}{3}$	M1	Solving to obtain a value of <i>t</i>
	Time taken is 5 s	A1 [4]	
	Alternative for (ii)		(M0 if $\omega = 67$ is used in (ii))
	$\omega_2^2 = 83^2 - 2 \times 1.2 \times 400$ M1A1 fi		
	$\omega_2 = 77$		
	77 = 83 - 1.2t M1		
	t=5 A1		

2	Volume $V = \int \pi y^2 dx = \int_a^{2a} \pi \frac{a^6}{x^4} dx$	M1	π may be omitted throughout
	$=\pi \left[-\frac{a^6}{3x^3} \right]_a^{2a} = \frac{7}{24}\pi a^3$	A1	For integrating x^{-4} to obtain $-\frac{1}{3}x^{-3}$
	$V\overline{x} = \int \pi x y^2 \mathrm{d}x$	M1	for $\int xy^2 dx$
	$= \int_{a}^{2a} \pi \frac{a^6}{x^3} dx$	A1	Correct integral form (including limits)
	$= \pi \left[-\frac{a^6}{2x^2} \right]_a^{2a} = \frac{3}{8}\pi a^4$	A1	For integrating x^{-3} to obtain $-\frac{1}{2}x^{-2}$
	$\overline{x} = \frac{\frac{3}{8}\pi a^4}{\frac{7}{24}\pi a^3}$ $= \frac{9a}{7}$	M1	Dependent on previous M1M1
	$=\frac{9a}{7}$	A1 [7]	

3 (i)		M1	Applying parallel axes rule
	$I = \frac{1}{2}(4m)(2a)^2 + (4m)a^2$	A1	11 3 21
	$+m(3a)^2$	B1	
	$=21ma^2$	A1 [4]	
(ii)	From P, $\bar{x} = \frac{(4m)a + m(3a)}{5m} \ (=\frac{7a}{5})$	M1 M1	Correct formula $2\pi \sqrt{\frac{I}{mgh}}$ seen
	Period is $2\pi \sqrt{\frac{21ma^2}{5mg(\frac{7}{5}a)}}$	A1 ft	or using $L = I\ddot{\theta}$ and period $2\pi/\omega$
	$=2\pi\sqrt{\frac{3a}{g}}$	A1 [4]	
	Alternative for (ii)		
	$-4mga\sin\theta - mg(3a)\sin\theta = (21ma^2)\ddot{\theta}$ M1 M1		Using $L = I\ddot{\theta}$ with three terms Using period $2\pi/\omega$
	Period is $2\pi \sqrt{\frac{21ma^2}{7mga}} = 2\pi \sqrt{\frac{3a}{g}}$ A1 ft A1		

4 (i)	$\frac{\sin \theta}{62} = \frac{\sin 40}{48}$ $\theta = 56.1^{\circ} \text{ or } 123.9^{\circ}$ Bearings are 018.9° and 311.1°	M1 M1 A1 A1A 1 [5]	Velocity triangle One value sufficient Accept 19° and 311°
(ii)	Shorter time when $\theta = 56.1^{\circ}$ $\frac{v}{\sin 83.87} = \frac{48}{\sin 40}$ Relative speed is $v = 74.25$ Time to intercept is $\frac{3750}{74.25}$ $= 50.5 \text{ s}$	B1 ft M1 A1 [4]	Or $v^2 = 62^2 + 48^2 - 2 \times 62 \times 48 \cos 83.87$ Dependent on previous M1
	Alternative for (i) and (ii) $ \binom{48 \sin \phi}{48 \cos \phi} t = \binom{3750 \sin 75}{3750 \cos 75} + \binom{62 \sin 295}{62 \cos 295} t $ M1 $ 3.732 \cos \phi - \sin \phi = 3.208 $ A1 $ \phi = 18.9^{\circ} \text{ and } 311.1^{\circ} $ A1A1		component eqns (displacement or velocity) obtaining eqn in ϕ or t or v (= 3750/ t) correct simplified equation or t^2 - 231.3 t + 9131.5 = 0 [t = 50.5, 180.8] or v^2 - 94.99 v + 1540 = 0[v = 74.25, 20.74] solving to obtain a value of ϕ solving to obtain a value of t (max A1 if any extra values given) appropriate selection for shorter time
	t = 50.5 B1 ft A1		

			,
5 (i)	Area is $\int_0^2 (8-x^3) dx = \left[8x - \frac{1}{4}x^4 \right]_0^2 = 12$	B1	
	Mass per m ² is $\rho = \frac{63}{12} = 5.25$	M1	
	$I_{y} = \sum (\rho y \delta x) x^{2} = \rho \int x^{2} y dx$	M1	for $\int x^2 y dx$ or $\int x^3 dy$
	$=\rho\int_0^2 (8x^2-x^5)\mathrm{d}x$	A1	or $\frac{1}{3} \rho \int_0^8 (8 - y) dy$
	$= \rho \left[\frac{8}{3} x^3 - \frac{1}{6} x^6 \right]_0^2 = \frac{32}{3} \rho$	A1	for $\frac{32}{3}$
	$= \frac{32}{3} \times \frac{63}{12} = 56 \text{ kg m}^2$	A1 AG [6]	
(ii)	Anticlockwise moment is $800 - 63 \times 9.8 \times \frac{4}{5}$	M1	
	= 306.08 Nm > 0		
	so it will rotate anticlockwise	A1	Full explanation is required; (anti)clockwise should be mentioned before the conclusion
(iii)	$I = I_x + I_y = 1036.8 + 56 (=1092.8)$	[2] B1	
	WD by couple is $800 \times \frac{1}{2}\pi$	B1	
	Change in PE is $63 \times 9.8 \times \left(\frac{24}{7} - \frac{4}{5}\right)$	B1	
	$800 \times \frac{1}{2}\pi = \frac{1}{2}I\omega^2 - 63 \times 9.8 \times \left(\frac{24}{7} - \frac{4}{5}\right)$	M1 A1	Equation involving WD, KE and PE May have an incorrect value for I;
	$1256.04 = 546.4\omega^2 - 1622.88$		other terms and signs are cao
	$\omega = 2.30 \text{ rad s}^{-1}$	A1 [6]	

6 (i)	GPE is $mg(a \sin 2\theta)$	B1	Or $mg(2a\cos\theta\sin\theta)$
	$AB = 2a\cos\theta \text{ or } AB^2 = a^2 + a^2 - 2a^2\cos(\pi - 2\theta)$		
	EPE is $\frac{\sqrt{3}mg}{2a}(2a\cos\theta)^2$	B1	Any correct form
	$=\sqrt{3}mga(1+\cos 2\theta)$	M1	Expressing EPE and GPE in terms of $\cos 2\theta$ and $\sin 2\theta$
	Total PE is $V = \sqrt{3}mga(1 + \cos 2\theta) + mga \sin 2\theta$		
	$= mga(\sqrt{3} + \sqrt{3}\cos 2\theta + \sin 2\theta)$	A1 AG [4]	
(ii)	$\frac{\mathrm{d}V}{\mathrm{d}\theta} = mga(-2\sqrt{3}\sin 2\theta + 2\cos 2\theta)$	B1	(B0 for $\frac{dV}{d\theta} = -2\sqrt{3}\sin 2\theta + 2\cos 2\theta$)
	$= 0$ when $2\sqrt{3}\sin 2\theta = 2\cos 2\theta$	M1	
	$\tan 2\theta = \frac{1}{\sqrt{3}}$		
	$\theta = \frac{\pi}{12} , -\frac{5\pi}{12}$	M1 A1A1 [5]	Solving to obtain a value of θ Accept 0.262, -1.31 or 15°, -75°
(iii)	$\frac{\mathrm{d}^2 V}{\mathrm{d}\theta^2} = mga(-4\sqrt{3}\cos 2\theta - 4\sin 2\theta)$	B1ft	
	When $\theta = \frac{\pi}{12}$, $\frac{d^2V}{d\theta^2} = -8mga < 0$	M1	Determining the sign of V" or M2 for alternative method for max / min
	so this position is unstable	A1	
	When $\theta = -\frac{5\pi}{12}$, $\frac{d^2V}{d\theta^2} = 8mga > 0$		
	so this position is stable	A1 [4]	

7 (i)	Initially $\cos \theta = \frac{0.6}{1.5} = 0.4$ $\frac{1}{2} \times 4.9 \omega^2 = 6 \times 9.8 (0.5 \times 0.4 - 0.5 \cos \theta)$ $\omega^2 = 12 (0.4 - \cos \theta)$ $\omega^2 = 4.8 - 12 \cos \theta$	M1 A1 A1 AG [3]	Equation involving KE and PE
(ii)	$6 \times 9.8 \times 0.5 \sin \theta = 4.9\alpha$ $\alpha = 6 \sin \theta (\text{rad s}^{-2})$	M1 A1 [2]	or $2\omega \frac{d\omega}{d\theta} = 12\sin\theta$ or $2\omega \frac{d\omega}{dt} = 12\sin\theta \frac{d\theta}{dt}$
(iii)	$6 \times 9.8 \cos \theta - F = 6 \times 0.5 \omega^{2}$ $58.8 \cos \theta - F = 14.4 - 36 \cos \theta$ $F = 94.8 \cos \theta - 14.4$ $6 \times 9.8 \sin \theta - R = 6 \times 0.5 \alpha$ $58.8 \sin \theta - R = 18 \sin \theta$ $R = 40.8 \sin \theta$	M1 M1 A1 AG M1 M1 A1 [6]	for radial acceleration $r\omega^2$ radial equation of motion Dependent on previous MI for transverse acceleration $r\alpha$ transverse equation of motion Dependent on previous MI
(iv)	If <i>B</i> reaches the ground, $\cos \theta = -0.4$ $F = -52.32$ $\sin \theta = \sqrt{0.84}$ [$\theta = 1.982$ or 113.6°] $R = 37.39$ Since $\frac{52.32}{37.39} = 1.40 > 0.9$, this is not possible Alternative for (iv) Slips when $F = -0.9R$ $94.8\cos\theta - 14.4 = -36.72\sin\theta$ M1 $\theta = 1.798$ [103.0°] A1 B reaches the ground when $\cos \theta = -0.4$ M1 $\theta = 1.982$ [113.6°] so it slips before this A1	M1 A1 M1 A1 [4]	Allow M1A0 if $\cos \theta = +0.4$ is used Obtaining a value for R Or $\mu R = 33.65$, and $52.32 > 33.65$ Allow M1A0 if $F = +0.9R$ is used Allow M1A0 if $\cos \theta = +0.4$ is used

Total		8	
	Close to st line or line good fit	B1 2	Not line accurate. Not fits trend
iv	Near 1 or lg, high, strong, good corr'n or relnship oe	B1ft	r small: allow little (or no) corr'n oe
	= 0.930 (3 sf)	A1 3	0.929 or 0.93 with or without wking B1M1A0 SC incorrect <i>n</i> : max B1M1A0
	$S_{xy} = 25 \qquad \text{or } 4.17$ $r = \frac{S_{xy}}{\sqrt{(S_{xx}S_{yy})}}$	M1	or $186 - \frac{21 \times 46}{6}$ dep B1
iii	$S_{xx} = 17.5$ or 2.92 $S_{yy} = 41.3$ or 6.89	B1	or $91 - 21^2/_6$ or $394 - 46^2/_6$ B1 for any one
ii	(line given by) minimum sum of squs	B1 B1 2	B1 for "minimum" or "least squares" with inadequate or no explanation
	Value of y was measured for each x x not dependent		dependent or yield not control water supply Not just y is dependent Not x goes up in equal intervals Not x is fixed
Total 3 i	x independent or controlled or changed	4 B1 1	Allow Water affects yield, or yield is
TD (1	$=\frac{27}{28}$ or 0.964 (3 sfs)	A1	1234567 & 1276543 (ans $^2/_7$): MR, lose A1
	$1 - \frac{6 \times 2^{"}}{7(7^2 - 1)}$	M1dep	$S_{xy}/\sqrt{(S_{xx}S_{yy})}$ M1 dep B1
2	first two d 's = ± 1 $\sum d^2$ attempted (= 2)	B1 M1	$\begin{vmatrix} S_{xx} \text{ or } S_{yy} = 28 & \text{B1} \\ S_{xy} = 27 & \text{B1} \end{vmatrix}$
Total		7	
iii	8 × 0.2 oe 1.6	M1 A1 2	$8 \times 0.2 = 2 \text{ M1A0} 1.6 \div 8 \text{ or}^{-1}/_{1.6} \text{ M0A0}$
	= 0.203 (3 sf)	A1 2	or equiv using formula
ii	1-0.7969	M1	allow 1– 0.9437 or 0.056(3)
	$0.9437 - 0.7969$ or ${}^{8}C_{3} \times 0.2^{3} \times 0.8^{5}$ = 0.147 (3 sfs)	M1 A1 3	
i	Binomial stated	M1	or implied by use of tables or 8C_3 or $0.2^a \times 0.8^b$ $(a+b=8)$
1			Q1: if consistent "0.8" incorrect or ¹ / ₈ , ⁷ / ₈ or 0.02 allow M marks in ii, iii & 1 st M1 in i

4			Q4: if consistent "0.7" incorrect or $\frac{1}{3}$, $\frac{2}{3}$ or 0.03 allow M marks in ii, iii & 1 st M1 in i
i	Geo stated $0.7^3 \times 0.3$ alone $^{1029}/_{10000}$ or 0.103 (3 sf)	M1 M1 A1 3	or implied by $q^n \times p$ alone $(n > 1)$ $0.7^3 - 0.7^4$
ii	0.7^4 alone = $^{2401}/_{10000}$ or 0.240 (3 sf)	M1 A1 2	$ \begin{array}{c} 1 - (0.3 + 0.7 \times 0.3 + 0.7^{2} \times 0.3 + 0.7^{3} \times 0.3) \\ \text{NB } 1 - 0.7^{4} : \text{M0} \end{array} $
iii	$1 - 0.7^5$	M2	or $0.3 + 0.7 \times 0.3 + + \dots + 0.7^4 \times 0.3$ M2 M1 for one term extra or omitted or wrong or for $1-$ (above) M1 for $1-0.7^6$ or 0.7^5
	= 0.832 (3 sfs)	A1 3	NB Beware: $1 - 0.7^6 = 0.882$
	2.5	8	
5i	=2.5	M1 A1 2	Allow ²⁵ / _(9to10) or 2.78: M1
ii	(19.5, 25) (9.5, 0)	B1 B1 2	Allow (24.5, 47) Both reversed: SC B1 If three given, ignore (24.5, 47)
iii	Don't know exact or specific values of x (or min or max or quartiles or median or whiskers). oe Can only estimate (min or max or quartiles or median or whiskers) oe Can't work out () oe Data is grouped oe	B1 1	Exact data not known Allow because data is rounded
Total		5	

6i	$\Sigma x \div 11$		M1		
	70		A1		
	Σx^2 attempted		M1		_, 2
			1011	\geq 5 terms, or $\sum (x-3)$	$(\overline{x})^2$
	$\sqrt{\frac{\sum x^2}{11}} - \overline{x}^2 = \sqrt{(54210)}/1$	702		or $\sqrt{\frac{\sum(x-\overline{x})^2}{11}} = \sqrt{3}$	
	$\sqrt{\frac{1}{11}} - x^2 = \sqrt{(\frac{3}{2})^2/1}$	$_1 - 70^2$) or $\sqrt{28.18}$ or		or $\sqrt{\frac{\sum (x-x)}{\sum (x-x)}} = \sqrt{3}$	$^{10}/_{11}$ or $\sqrt{28.18}$
	V 11		A1	11	711 01 120.10
	5.309			ie correct substn or re	esult
				To contect substitution in	Journ
	(=5.31) AG		4	If \times ¹¹ / ₁₀ : M1A1M1A	.0
				10*************************************	
ii	Attempt arrange in orde		M1		
111		5 1			
	med = 67		A1	(50.5 50.5) (65	
	74 and 66		M1	or $(72.5 - 76.5) - (65$	0.5 – 66.5) incl
	IQR = 8		A1 4	must be from $74 - 66$)
				iii, iv & v: ignore ext	ras
iii	no (or fewer) extremes	this year oe	B1 1	fewer high &/or low	
111	sd takes account of all	2	D1 1	highest score(s) less t	
				ingliest score(s) less t	man iast year
	sd affected by extremes			NT / 1 1	•
	less spread tho' middle	50% same		Not less spread or mo	ore consistent
	less spread tho' 3 rd & 9	" same or same gap		Not range less	
iv	sd measures spread or v	variation or	B1 1	sd less means spread	is less oe
	consistency oe			or marks are closer to	ogether oe
V	more consistent, more s	similar.	B1 1	allow less variance	
,	closer together, nearer			WITCH TUBE TWITTE	
	_	io mean		Not range less	
	less spread			_	1
				Not highest & lowest	cioser
Total			11		
7i	$^{8}C_{3}$		M1		
	= 56		A1 2		
ii	$^{7}\text{C}_{2} \text{ or or } ^{7}\text{P}_{2} / {}^{8}\text{P}_{3}$	¹ / ₈ not from incorrect	M1	${}^{8}C_{1} + {}^{7}C_{1} + {}^{6}C_{1}$ or 21	$^{7}/_{8} \times ^{6}/_{7} \times ^{5}/_{6}$
		<u> </u>		or $8\times7\times6$	
		× 3 only		$\operatorname{or}^{-1}/8 \times {}^{-1}/7 \times {}^{-1}/6$	
	÷(8C or "56") only		M1	01 /8//6	1 – prod 3 probs
	$\frac{\div(^{8}\text{C}_{3} \text{ or "56"}) \text{ only}}{=^{3}/_{8}}$	or 1/8+7/8×1/7+7/8×6/7×1/		indon don < 1	1 – prod 3 proos
	$=$ $\frac{1}{2}$ /8	/8+1/8×1/7+1/8×1/7×1/	A1 3	indep, dep ans < 1	
	0	6			
iii	$^{8}P_{3}$ or $8\times7\times6$ or $^{8}C_{1}$	$_1 \times 'C_1 \times ^{\mathfrak{o}}C_1$ or 336	M1	$^{1}/_{8} \times ^{1}/_{7} \times ^{1}/_{6}$ only M	I2 If \times or \div : M1
					$(^{1}/_{8})^{3}$ M1
	$1 \div {}^{8}P_{3}$ only		M1		` -/
	$= \frac{1}{336}$ or 0.00298 (3 s	f)	A1 3		
Total	7 330 31 0.00270 (3 3	* /	8		
1 Otal	ĺ		σ		

8ia	18/ ₁₉ or 1/ ₁₉ seen 17/ ₁₈ or 1/ ₁₉ seen structure correct ie 6 branches all correct incl. probs and W & R	B1 B1 B1	regardless of probs & la (or 14 branches with cor	
b	$\frac{1}{20} + \frac{19}{20} \times \frac{1}{19} + \frac{19}{20} \times \frac{18}{19} \times \frac{1}{18}$ $= \frac{3}{20}$	M2 A1 3	M1 any 2 correct terms added	$1 - \frac{^{19}/_{20} \times ^{18}/_{19} \times ^{17}/_{18}}{1 - \frac{^{19}/_{20} \times ^{18}/_{19} \times ^{17}/_{18}}$
iia	$ \begin{vmatrix} 19/_{20} \times {}^{18}/_{19} \\ = {}^{9}/_{10} \text{ oe} \end{vmatrix} $	M1 A1 2	$^{19}/_{20} \times ^{18}/_{19} \times ^{1}/_{18} + ^{19}/_{20} \times ^{18}/_{19}$	$_{9}^{17}/_{18}$ or $_{20}^{17}+_{17}^{17}/_{20}$
b	$(P(X=1) = {}^{1}/_{20})$ ${}^{19}/_{20} \times {}^{1}/_{19}$ $= {}^{1}/_{20}$ $\sum xp$ $= {}^{57}/_{20} \text{ or } 2.85$	M1 A1 M1 A1 4	≥ 2 terms, ft their <i>p</i> 's if ≥ 2 NB: $^{19}/_{20} \times 3 = 2.85$ no m	
ia			With replacement: Original scheme	
ib			$\int_{0}^{1/20} + \int_{0}^{19/20} \times \int_{0}^{1/20} + \int_{0}^{19/20} \times \int_{0}^{19/20} \int_{0}^{19/20} $	M1
iia			$(^{19}/_{20})^2$ or $(^{19}/_{20})^2 \times ^1/_{20} + (^{19}/_{20})^2 \times ^1/_$	$(^{19}/_{20})^2 \times ^{19}/_{20} \text{ M1}$
b			Original scheme But NB ans 2.85(25)	M1A0M1A0
Total		13		

9i	$\frac{\left(1 - 0.12\right)^n}{\log 0.05}$	or $0.88^{23} = 0.052$	M1	Can be implied by 2^{nd} M1 allow $n-1$
	log 0.88	or $0.88^{24} = 0.046$	M1	or log _{0.88} 0.05 or 23.4()
	n=24		A1 3	Ignore incorrect inequ or equals signs
ii	${}^{6}\text{C}_{2} \times 0.88^{4} \times 0.12^{2}$	(= 0.1295)	M3	or $0.88^4 \times 0.12^2$ M2 or $^6C_2 \times 0.88^4 \times 0.12^2$ + extra M2
				or 2 successes in 6 trials implied or $^6\mathrm{C}_2$ M1
	× 0.12 = 0.0155		M1 A1 5	$dep \ge M1$
	- 0.0133		Al 3	$0.88^4 \times 0.12^2 \times 0.12$: M2M1 $0.88^4 \times 0.12^3$ M0M0A0 unless clear P(2 success in 6 trials) × 0.12 in which case M2M1A0
Total			8	

Total 72 marks

1	$\frac{105.0 - \mu}{\sigma} = -0.7; \frac{110.0 - \mu}{\sigma} = -0.5$ Solve: $\sigma = 25$ $\mu = 122.5$	M1 A1 B1 M1 A1 A1	Standardise once, equate to Φ^{-1} , allow σ^2 Both correct including signs & σ , no cc (continuity correction), allow wrong z Both correct z-values. "1 –" errors: M1A0B1 Get either μ or σ by solving simultaneously σ a.r.t. 25.0 $\mu = 122.5 \pm 0.3$ or 123 if clearly correct, allow from σ^2 but <i>not</i> from $\sigma = -25$.
2	Po(20) \approx N(20, 20) Normal approx. valid as $\lambda > 15$ $1 - \Phi\left(\frac{24.5 - 20}{\sqrt{20}}\right) = 1 - \Phi(1.006)$ = 1 - 0.8427 = 0.1573	M1 A1 B1 M1 A1	Normal stated or implied (20, 20) or (20, $\sqrt{20}$) or (20, 20^2), can be implied "Valid as $\lambda > 15$ ", or "valid as λ large" Standardise 25, allow wrong or no cc, $\sqrt{20}$ errors $1.0 < z \le 1.01$ Final answer, art 0.157
3	H ₀ : $p = 0.6$, H ₁ : $p < 0.6$ where p is proportion in population who believe it's good value $R \sim B(12, 0.6)$ α : $P(R \le 4) = 0.0573$ > 0.05 β : CR is ≤ 3 and $4 > 3$	B2 M1 A1 B1	Both, B2. Allow π , % One error, B1, except x or \overline{x} or r or R : 0 B(12, 0.6) stated or implied, e.g. N(7.2, 2.88) Not P(< 4) or P(\geq 4) or P($=$ 4) Must be using P(\leq 4), or P($>$ 4) < 0.95 and binomial Must be using CR; explicit comparison needed
	p = 0.0153 Do not reject H ₀ . Insufficient evidence that the proportion who believe it's good value for money is less than 0.6	A1 M1	Correct conclusion, needs B(12,0.6) and \leq 4 Contextualised, some indication of uncertainty [SR: N(7.2,) or Po(7.2): poss B2 M1A0] [SR: P(\leq 4) or P($=$ 4) or P(\geq 4): B2 M1A0]
4 (i)	Eg "not all are residents"; "only those in street asked"	B1 B1	One valid relevant reason A definitely different valid relevant reason Not "not a random sample", not "takes too long"
(ii)	Obtain list of whole population Number it sequentially Select using random numbers [Ignore method of making contact]	B1 B1 B1	"Everyone" or "all houses" must be implied Not "number it with random numbers" unless then "arrange in order of random numbers" SR: "Take a random sample": B1 SR: Systematic: B1 B0, B1 if start randomly chosen
(iii)	Two of: α: Members of population equally likely to be chosen β: Chosen independently/randomly γ: Large sample (e.g. > 30)	B1 B1	One reason. NB: If "independent", must be "chosen" independently, not "views are independent" Another reason. Allow "fixed sample size" but not both that and "large sample". Allow "houses"

5	(i)	Bricks scattered at constant average rate & independently of one another	B1 B1	2	B1 for each of 2 different reasons, in context. (Treat "randomly" = "singly" = "independently")
	(ii)	Po(12) $P(\le 14) - P(\le 7) = .77200895$ [or $P(8) + P(9) + + P(14)$]	B1 M1		Po(12) stated or implied Allow one out at either end or both, eg 0.617, or wrong column, but <i>not</i> from Po(3) nor, eg, .9105 – .7720
		= 0.6825	A1	3	Answer in range [0.682, 0.683]
	(iii)	$e^{-\lambda} = 0.4$ $\lambda = -\ln(0.4)$ = 0.9163 Volume = 0.9163 ÷ 3 = 0.305	B1 M1 A1 M1	4	This equation, aef, can be implied by, eg 0.9 Take ln, or 0.91 by T & I λ art 0.916 or 0.92, can be implied Divide their λ value by 3 [SR: Tables, eg 0.9÷3: B1 M0 A0 M1]
6	(i)	$33.6 \frac{115782.84}{100} - 33.6^{2} [= 28.8684] \times \frac{100}{99} $	B1 M1 M1 A1	4	33.6 clearly stated [not recoverable later] Correct formula used for biased estimate $\times \frac{100}{99}, \text{ M's independent. Eg } \frac{\Sigma r^2}{99} [-33.6^2]$ SR B1 variance in range [29.1, 29.2]
	(ii)	$ \overline{R} \sim N(33.6, 29.16/9) = N(33.6, 1.8^2) 1 - \Phi\left(\frac{32 - 33.6}{\sqrt{3.24}}\right) [= \Phi(0.8889)] $	M1 A1 M1		Normal, their μ , stated or implied Variance [their (i)]÷9 $[not \div 100]$ Standardise & use Φ , 9 used, answer > 0.5, allow $\sqrt{\text{errors}}$, allow cc 0.05 but <i>not</i> 0.5
		= 0.8130	A1	4	Answer, art 0.813
	(iii)	No, distribution of R is normal so that of \overline{R} is normal	B2	2	Must be saying this. Eg "9 is not large enough": B0. Both: B1 max, unless saying that <i>n</i> is irrelevant.
7	(i)	$\frac{2}{9} \int_0^3 x^3 (3-x) dx = \frac{2}{9} \left[\frac{3x^4}{4} - \frac{x^5}{5} \right]_0^3 [= 2.7] - (1\frac{1}{2})^2 = \frac{9}{20} \text{ or } 0.45$	M1 A1 B1 M1 A1	5	Integrate $x^2 f(x)$ from 0 to 3 [not for μ] Correct indefinite integral Mean is $1\frac{1}{2}$, soi [not recoverable later] Subtract their μ^2 Answer art 0.450
	(ii)	$\int_{9}^{2} \int_{0}^{0.5} x(3-x)dx = \frac{2}{9} \left[\frac{3x^2}{2} - \frac{x^3}{3} \right]_{0}^{0.5}$ $= \frac{2}{27} \text{ AG}$	M1 A1	2	Integrate $f(x)$ between 0, 0.5, must be seen somewhere Correctly obtain given answer $\frac{2}{27}$, decimals other than 0.5 not allowed, 1 more line needed (eg [] = $\frac{1}{3}$)
	(iii)	B(108, $\frac{2}{27}$) $\approx N(8, 7.4074)$ $1 - \Phi\left(\frac{9.5 - 8}{\sqrt{7.4074}}\right)$ = 1 - $\Phi(0.5511)$ = 0.291	B1 M1 A1 M1	6	B(108, $\frac{2}{27}$) seen or implied, eg Po(8) Normal, mean 8 variance (or SD) 200/27 or art 7.41 Standardise 10, allow $\sqrt{\text{errors}}$, wrong or no cc, needs to be using B(108,) Correct $\sqrt{\text{and cc}}$ Final answer, art 0.291

	(iv)	$\overline{X} \sim N(1.5, \frac{1}{240})$	B1 B1√ B1√ 3	Normal NB: <i>not</i> part (iii) Mean their μ Variance or SD (their 0.45)/108 [not (8, 50/729)]
8	(i)	H ₀ : $\mu = 78.0$ H ₁ : $\mu \neq 78.0$ $z = \frac{76.4 - 78.0}{\sqrt{68.9/120}} = -2.1115$ > -2.576 or 0.0173 > 0.005	B1 B1 M1 A1 B1	Both correct, B2. One error, B1, but x or \bar{x} : B0. Needs $\pm (76.4 - 78)/\sqrt{(\sigma \div 120)}$, allow $\sqrt{\gamma}$ errors art -2.11 , or $p = 0.0173 \pm 0.0002$ Compare z with $(-)2.576$, or p with 0.005
		$78 \pm z\sqrt{(68.9/120)}$ = 76.048 $76.4 > 76.048$	M1 A1√ B1	Needs 78 and 120, can be – only Correct CV to 3 sf, $\sqrt{\text{on } z}$ $z = 2.576$ and compare 76.4, allow from 78 \leftrightarrow 76.4
		Do not reject H_0 . Insufficient evidence that the mean time has changed	M1 A1√ 7	Correct comparison & conclusion, needs 120, "like with like", correct tail, \bar{x} and μ right way round Contextualised, some indication of uncertainty
	(ii)	$\frac{1}{\sqrt{68.9/n}} > 2.576$ $\sqrt{n} > 21.38,$ $n_{\min} = 458$ Variance is estimated	M1 M1 A1	IGNORE INEQUALITIES THROUGHOUT Standardise 1 with n and 2.576, allow $\sqrt{\text{errors}}$, cc etc but not 2.326 Correct method to solve for \sqrt{n} (not from n) 458 only (not 457), or 373 from 2.326, signs
		variance is estimated	B1 4	correct Equivalent statement, allow "should use t". In principle nothing superfluous, but "variance stays same" B1 bod

B0

[effectively the same]

[effectively the same]

B1 only

B1 only

B1 only

Events must occur independently and at constant average rate

They must occur independently and at constant average rate

Bricks' locations must be random and independent

Only one brick in any one place; bricks independent

δ

3

ζ

η

Penalise 2 sf instead of 3 once only. Penalise final answer ≥ 6 sf once only.

	·		·
1 (i)	$\int_0^1 \frac{2}{5} x^2 dx + \int_1^4 \frac{2}{5} \sqrt{x} dx$	M1	Attempt to integrate $xf(x)$, both parts added, limits
	$ = \left[\frac{2x^3}{15} \right]_0^1 + \left[\frac{4x^{3/2}}{15} \right]_0^4 = 2 $	A1	Correct indefinite integrals
		A1 3	Correct answer
(ii)	$\int_{2}^{4} \frac{2}{5\sqrt{x}} dx = \left[\frac{4\sqrt{x}}{5} \right]^{4} = \frac{4}{5} (2 - \sqrt{2}) \text{ or } 0.4686$	M1	Attempt correct integral, limits; needs "1 –" if μ < 1
	$\begin{bmatrix} J_2 & 5\sqrt{x} & 1 & 5 \end{bmatrix}_2 & 5 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1$	A1 A1 3	Correct indefinite integral, $$ on their μ Exact aef, or in range [0.468, 0.469]
2 (i)	Po(0.5), Po(0.75)	M1	0.5, 0.75 scaled
	Po(0.7) and Po(0.9) $A + B \sim \text{Po}(1.6)$	A1 M1	These Sum of Poissons used, can have wrong
			parameters
	$P(A + B \ge 5) = 0.0237$ B(20, 0.0237)	A1 M1	0.0237 from tables or calculator Binomial (20, their <i>p</i>), soi
	$0.9763^{20} + 20 \times 0.9763^{19} \times 0.0237$	A1√	Correct expression, their <i>p</i> Answer in range [0.919, 0.92]
	= 0.9195	A1 7	
(ii)	Bacteria should be independent in drugs; <i>or</i> sample should be random	B1 1	Any valid relevant comment, must be contextualised
3 (i)	Sample mean = 6.486	B1	
	$s^2 = 0.00073$	B1	0.000584 if divided by 5
	$6.486 \pm 2.776 \times \sqrt{\frac{0.00073}{5}}$	M1	Calculate sample mean $\pm ts/\sqrt{5}$, allow 1.96, s^2 etc
	(6.45, 6.52)	B1 A1A1 (t = 2.776 seen Each answer, cwo (6.45246, 6.5195)
			(0.13210, 0.3193)
(ii)	$2\pi \times \text{above}$ [= (40.5, 41.0)]	M1 1	
4 (i)	H_0 : $p_1 = p_2$; H_1 : $p_1 \neq p_2$, where p_i is the proportion of all solvers of puzzle i	B1	Both hypotheses correctly stated, allow eg \hat{p}
	Common proportion 39/80	M1A1 B1	[= 0.4875]
	$s^2 = 0.4875 \times 0.5125 / 20$ $0.6 - 0.375$	M1	$[= 0.01249, \sigma = 0.11176]$ (0.6 - 0.375)/s
	$(\pm)\frac{0.6-0.375}{0.1117} = (\pm)2.013$	A1√	Allow 2.066 from unpooled variance, $p = 0.0195$
	2.013 > 1.96, or $0.022 < 0.025Reject H0. Significant evidence that there$	M1	Correct method and comparison with 1.96 or 0.025, allow unpooled, 1.645 from 1-tailed
	is a difference in standard of difficulty	A1√ 8	only Conclusion, contextualised, not too assertive
(ii)	One-tail test used	M1	One-tailed test stated or implied by
	Smallest significance level 2.2(1)%	A1 2	Φ ("2.013"), OK if off-scale; allow 0.022(1)

5 (i)	Numbers of men and women should have normal dists; with equal variance; distributions should be independent	B1 B1 B1 3	Context & 3 points: 2 of these, B1; 3, B2; 4, B3. [Summary data: 14.73
(ii)	H ₀ : $\mu_M = \mu_W$; H ₁ : $\mu_M \neq \mu_W$ $3992 - \frac{221^2}{15} + 5538 - \frac{276^2}{17} \approx 1793$	B1 M1 A1	Both hypotheses correctly stated Attempt at this expression (see above) Either 1793 or 30
	$1793/(14+16) = 59.766$ $(1) \frac{221/15 - 276/17}{(1)^{2}} = (-)0.548$	A1 M1	Variance estimate in range [59.7, 59.8] (or $\sqrt{200}$ = 7.73) Standardise, allow wrong (but not missing)
	$(\pm)\frac{221/15 - 276/17}{\sqrt{59.766(\frac{1}{15} + \frac{1}{17})}} = (-)0.548$	A1√ A1	1/n Correct formula, allow $s^2(\frac{1}{15} + \frac{1}{17})$ or $(\frac{s^2}{15} + \frac{s^2}{17})$, allow 14 & 16 in place of 15, 17; 0.548 or –
	Critical region: $ t \ge 2.042$ Do not reject H ₀ . Insufficient evidence of a difference in mean number of days	B1 M1 A1√ 10	0.548 2.042 seen Correct method and comparison type, must be <i>t</i> , allow 1-tail; conclusion, in context, not too assertive
(iii	Eg Samples not indep't so test invalid	B1 1	Any relevant valid comment, eg "not representative"

6	(i)	$F(0) = 0$, $F(\pi/2) = 1$ Increasing	B1 B1	2	Consider both end-points Consider F between end-points, can be asserted
	(ii)	$\sin^4(Q_1) = \frac{1}{4}$ $\sin(Q_1) = \frac{1}{\sqrt{2}}$ $Q_1 = \frac{\pi}{4}$	M1 A1	3	Can be implied. Allow decimal approximations Or 0.785(4)
-	(iii)	$G(y) = P(Y \le y) = P(T \le \sin^{-1} y)$ $= F(\sin^{-1} y)$ $= y^{4}$ $g(y) = \begin{cases} 4y^{3} & 0 \le y \le 1\\ 0 & \text{otherwise} \end{cases}$	M1 A1 A1 M1 A1	5	Ignore other ranges Differentiate $G(y)$ Function and range stated, allow if range given in G
-	(iv)	$\int_0^1 \frac{4}{1+2y} dy = \left[2 \ln(1+2y) \right]_0^1$ = 2 \ln 3	M1 A1	3	Attempt $\int \frac{g(y)}{y^3 + 2y^4} dy$; $\int_0^1 \frac{4}{1 + 2y} dy$ Or 2.2, 2.197 or better
7	(i) α	$\Phi\left(\frac{8.084 - 8.592}{0.7534}\right) = \Phi(-0.674) = 0.25$ $\Phi(0) - \Phi(above) = 0.25$ $P(8.592 \le X \le 9.1) = \text{same by symmetry}$	M1 A1 A1	4	Standardise once, allow $$ confusions, ignore sign Obtain 0.25 for one interval For a second interval, justified, eg using $\Phi(0) = 0.5$ For a third, justified, eg "by symmetry"
	or β	$\frac{x - 8.592}{0.7534} = 0.674$ $x = 8.592 \pm 0.674 \times 0.7534$ $= (8.084, 9.100)$	M1A		[from probabilities to ranges] A1 for art 0.674
-	(ii)	H ₀ : normal distribution fits data All E values $50/4 = 12.5$ $X^2 = \frac{4.5^2 + 9.5^2 + 1.5^2 + 3.5^2}{12.5} = 10$ 10 > 7.8794 Reject H ₀ . Significant evidence that normal distribution is not a good fit.	B1 B1 M1 A1 B1 M1	7	Not N(8.592, 0.7534). Allow "it's normally distributed" [Yates: 8.56: A0] CV 7.8794 seen Correct method, incl. formula for χ² and comparison, allow wrong ν Conclusion, in context, not too assertive
-	(iv)	$8.592 \pm 2.576 \times \frac{0.7534}{\sqrt{49}}$	M1 A1		Allow $\sqrt{\text{errors}}$, wrong σ or z , allow 50 Correct, including $z = 2.576$ or $t_{49} = 2.680$, not 50
		(8.315, 8.869)	A1	3	In range [8.31, 8.32] and in range (8.86, 8.87], even from 50, or (8.306, 8.878) from t_{49}

	T		<u></u>
1	$M_{X_1+X_2}(t) = (e^{\mu_1 t + \frac{1}{2}\sigma_1^2 t^2})(e^{\mu_2 t + \frac{1}{2}\sigma_2^2})$	M1	MGF of sum of independent RVs
	$= e^{(\mu_1 + \mu_2)t + \frac{1}{2}(\sigma_1^2 + \sigma_2^2)t^2} $ oe	A1	
	$X_1 + X_2 \sim \text{Normal distribution}$	A1	
	with mean $\mu_1 + \mu_2$, variance $\sigma_1^2 + \sigma_2^2$	A1A1 5 {5}	No suffices:- Allow M1A0A1A0A0
2 (i)	Non-parametric test used when the distribution of the variable in question is unknown	B1 1	
(ii)	H_0 : $m_{V-A} = 0$, H_1 : $m_{V-A} \neq 0$ where m_{V-A} is the median of the population differences	B1	Allow $m_V = m_A$ etc
	1	N/1	
	Difference and rank, bottom up	M1	
	$P = 65 \ Q = 13$	A1	Allow $P > Q$ stated
	T = 13	B1	
	Critical region: $T \le 13$	M1	
	13 is inside the CR so reject H_0 and accept		
	that there is sufficient evidence at the		
	5% significance level that the	. 1	D 1:
	medians differ	A1	Penalise over-assertive conclusions once
	Use B(12, 0.5)	M1	only.
	$P(\le 4) = 0.1938 \text{ or } CR = \{0,1,2,10,11,12\}$	A1	
	> 0.025, accept that there is insufficient	A1 9	Or 4 not in CR
	evidence, etc CWO		
(iii)	Wilcoxon test is more powerful than the sign	B1 1	Use more information, more likely to
	test	{11}	reject NH
3 (i)	A+B	(11)	rejectivit
3(1)			
	$= \int_{-\infty}^{0} e^{2x} e^{xt} dx + \int_{0}^{\infty} e^{-2x} e^{xt} dx$	M1	Added, correct limits
	$= \left[\frac{1}{2+t} e^{(2+t)x} \right]_{-\infty}^{0} + \left[-\frac{1}{2-t} e^{-(2-t)x} \right]_{0}^{\infty}$	B1 B1	Correct integrals
	$= \frac{1}{(2+t)} + \frac{1}{(2-t)}$ = $\frac{4}{(4-t^2)}$ AG		
		A1	Allow sensible comments about denom
	t < -2, A infinite; $t > 2$, B infinite	B1 5	of $M(t)$
·	F:41 4/(4 2) (1 1/2) =1) 	r 1
(ii)	Either: $4/(4-t^2) = (1-\frac{1}{4}t^2)^{-1}$ = $1+\frac{1}{4}t^2+\dots$ Or: M' $(t) = 8t/(4-t^2)^2$	M1 A1	Expand
	Or : M' $(t) = 8t/(4-t^2)^2$		M1
	$M''(t) = 8/(4-t^2)^2 + t \times$		A1
	E(X) = 0	M1	
	$Var(X) = 0$ $Var(X) = 2 \times \frac{1}{4} - 0 = \frac{1}{2}$		For $M''(0) = [M'(0)]^2$ or agriculant
	$Val(A) = 2^{4} - 0 = /2$		For $M''(0) - [M'(0)]^2$ or equivalent
		{9 }	0.5 - 0 = 0.5

4	G(1)=1 [$a+b=1$]	M1	
(i)	G'(1) = -0.7 [$-a + 2b = -0.7$]	M1	
	Solve to obtain	M1	
	a = 0.9 , $b = 0.1$	A1 4	
(ii)	$G''(t)$ [=1.8/ t^3 + 0.2] and	M1	
	$G''(1) + G'(1) - [G'(1)^2]$ used		
	$Var = 2 - 0.7 - 0.7^2 = 0.81$	A1 2	
(iii)	$[(0.9+0.1t^3)/t]^{10}$	M1	$[(a+bt^3)/t]^{10}$
	Method to obtain coefficient of t^{-7}	M1	For both
	$10 \times 0.9^9 \times 0.1$	A1 ft	Use of MGF. $10a^9b$
	= 0.387 to 3SF	A1 4	
		{10}	
5	Marginal dist of X_A : 0.30 0.45 0.15 0.10	B1	
(i)	E = 0.45 + 0.3 + 0.3 = 1.05	B1	
	$Var = 0.45 + 0.6 + 0.9 - 1.05^2$		
	= 0.8475	B1 3	
(ii)	Consider a particular case to show	M1	Or $E(X_A)$, $E(X_B)$ and $E(X_AX_B)$
	$P(X_A \text{ and } X_B) \neq P(X_A)P(X_B)$		1.05, 1.15, 1.09;
	So X_A and X_B are not independent	A1 2	(1) (1)
		ļ	$E(X_A)$
(iii)	$Cov = E(X_A X_B) - E(X_A)E(X_B)$	M1	Or from distribution of X_A - X_B
	$= 1.09 - 1.15 \times 1.05 = -0.1175$	A1ft	Wrong $E(X_A)$
	$\operatorname{Var}(X_A - X_B) = \operatorname{Var}(X_A) + \operatorname{Var}(X_B) -$	M1	
	$2\operatorname{Cov}(X_A, X_B)$	A1 4	
	= 1.91		
(iv)	Requires $P(X_A, X_B)/P(X_A + X_B = 1)$	3.61	
	= 0.13/(0.16 + 0.13)	M1	
	= 13/29 = 0.448	A1A1	
		A1 4	
		{13}	

6 (i)	$\int_{a}^{\infty} x e^{-(x-a)} dx = \left[-x e^{-(x-a)} \right]_{a}^{\infty} + \int_{a}^{\infty} e^{-(x-a)} dx$	M1E	0.1	Correct limits needed for M1; no, or
	- 4	IVIII) 1	incorrect, limits allowed for B1
	$= a + [-e^{-(x-a)}]$	A1	3	incorrect, mints anowed for B1
	= a + 1 AG	l		
(ii)	$E(T_1) = (a+1) + 2(a+1) - 2(a+1) - 1$	M1		
	$= a$ $F(T) = \frac{1}{(n+1)(n+1)} + \frac{2}{(n+1)} \frac{2}{(n+1)} = 1$	A1		
	$E(T_2) = \frac{1}{4}(a+1+a+1) + \frac{(n-2)(a+1)}{[2(n-2)]} - 1$	M1 A1	4	
	- a	AI	4	
(:::)	(So both are unbiased estimators of <i>a</i>) $\sigma^2 = Var(X)$	M1		
(iii)	$\sigma = \text{Var}(X)$ $\text{Var}(T_1) = (1 + 4 + 1 + 1)\sigma^2 = 7\sigma^2$			
	$Var(T_1) = (1 + 4 + 1 + 1)\sigma = /\sigma$ $Var(T_2) = 2\sigma^2/16 + (n-2)\sigma^2/[2(n-2)^2]$	A1		
	$\operatorname{Var}(I_2) = 2\sigma/16 + (n-2)\sigma/[2(n-2)]$ = $n\sigma^2/[8(n-2)]$ oe	B1		
	$= n\sigma/[8(n-2)] \text{ oe}$ This is clearly $< 7\sigma^2$, so T_2 is more efficient	A1	4	
(iv)	eg $\frac{1}{n}(X_1 + X_2 + + X_n) - 1$	B2	2	B1 for sample mean
(10)	eg $/_n(\Lambda_1 + \Lambda_2 + \ldots + \Lambda_n) - 1$	D2	{13}	BT for sample mean
7 (i)	D denotes "The person has the disease"		(13)	
(1)	(a) $P(D) = p$, $P(D') = 1 - p$,			
	P(+ D) = 0.98, P(+ D') = 0.08			
	$P(+) = p \times 0.98 + 0.08 \times (1-p)$	M1		
	= 0.08 + 0.9p	1,111		
	$P(D \mid +) = P(+ \mid D)(P(D)/P(+)$	M1		Use conditional probability
	= 0.98p/(0.08 + 0.9p)	A1		god conditional procedurity
	(b) $P(D')\times P(+ D') + P(D)\times P(- D)$	M1		
	= 0.08 - 0.06p	A1	5	
(ii)	$P(++) = 0.98^2 \times p + 0.08^2 \times (1-p)$	M1		
	P(D ++) = 0.9604p/(0.954p + 0.0064)	A1	2	
(iii)	Expected number with 2 tests:			
	$24000 \times 0.0809 = a$	M1		Or: $0.08 + 0.9 \times 0.001$ oe
	Expected number with 1 test:			
	$24\hat{0}00 \times 0.9191 = b$	M1		×5×24000
	Expected total cost = $\pounds(10a + 5b)$	M1		+5×24000 (dep 1 st M1)
	= £129 708	A1	4	Or £130 000
			{11}	

4736 Decision Mathematics 1

1 (i)	[43 172 536 17 314 462 220 231]			
	43 172 536 17 220	M1	First folder correct	
	314 462	M1	Second folder correct	
	231	A1	All correct (cao)	[3]
(ii)	536 462 314 231 220 172 43 17	B1	List sorted into decreasing order seen (cao)	
			[Follow through from a decreasing list with no more than 1 error or omission]	
	536 462	M1	First folder correct	[3]
	314 231 220 172 43 17	A1	All correct	F- 3
(iii)	$(5000 \div 500)^2 \times 1.3$	M1	$10^2 \times 1.3$	
			or any equivalent calculation	
	= 130 seconds	A1	Correct answer, with units	[2]
			Total =	8

2 (i)	The sum of the orders must be even, (but $1+2+3+3 = 9$ which is odd).	B1	There must be an even number of odd nodes.	[1]
(ii) a	eg	M1	A graph with five vertices that is neither connected nor simple	
	•	A1	Vertex orders 1, 1, 2, 2, 4	[2]
b	Because it is not connected	B1	You cannot get from one part of the graph to the other part.	[1]
С	eg •	B1	A connected graph with vertex orders 1, 1, 2, 2, 4 (Need not be simple)	
				[1]
(iii) a	There are five arcs joined to <i>A</i> . Either Ann has met (at least) three of the others or she has met two or fewer, in which case there are at least three that she	M1	A reasonable attempt (for example, identifying that there are five arcs joined to <i>A</i>)	
	has not met. In the first case at least three of the arcs joined to A are blue, in the second case at least three of the arcs joined to A are red.	A1	A convincing explanation (this could be a list of the possibilities or a well reasoned explanation)	[2]
b	If any two of Bob, Caz and Del have met	M1	A reasonable or partial attempt	
	one another then B, C and D form a blue triangle with A. Otherwise B, C and D form a red triangle.	A1	(using A with B, C, D) A convincing explanation (explaining both cases fully)	[2]
			Total =	9

			Total =	11
(iv)	$2 \times 1 + k \times 7 \ge 2 \times 4 + k \times 4$ $k \ge 2$	M1 A1	$2 + 7k$ or implied, or using line of gradient $-\frac{2}{k}$ Greater than or equal to 2 (cao) $[k > 2 \Rightarrow M1, A0]$	[2]
(iii)	(1, 7) 23 (4, 4) 20 At optimum, $x = 1$ and $y = 7$ Maximum value = 23	M1 A1 A1	Follow through if possible Testing vertices or using a line of constant profit (may be implied) Accept (1, 7) identified 23 identified	[3]
(ii)	(1, 1), (1, 7), (4, 4)	M1 A1	Any two correct coordinates All three correct [Extra coordinates given ⇒ M1, A0]	[2]
3 (i)	$y \ge x$ $x + y \le 8$ $x \ge 1$	M1 M1 M1 A1	Line $y = x$ in any form Line $x + y = 8$ in any form Line $x = 1$ in any form All inequalities correct [Ignore extra inequalities that do not affect the feasible region]	[4]

4 (i)	1 0 A E 2 2 2 4 5 6.5 6 8 8 E 2 6 5 6.5 9.5 B D F H 3 4.5 4.5 14 13.5 10.5 C G	M1 M1 A1	Both 6 and 5 shown at <i>D</i> [5 may appear as perm label only] 14, 13.5 and 10.5 shown at <i>G</i> No extra temporary labels All temporary labels correct [condone perm values only appearing as perm labels] [Dep on both M marks] All permanent labels correct [may omit <i>G</i> , but if given it must be correct] Order of labelling correct [may omit <i>G</i> but if given it must be	
			correct]	
	Route = $A - B - D - F - H$	B1	cao	F#1
(** <u>)</u>	Length = 9.5 miles	B1	cao	[7]
(ii)	Route Inspection problem	B1	Accept Chinese Postman	[1]
(iii)	Odd nodes: A , D , E and H AD = 5 $AE = 8$ $AH = 9.5$	B1 M1	Identifying or using <i>A,D,E,H</i> Attempting at least one pairing	
	AD - 3 $AE - 6$ $AH - 9.3EH = 5$ $DH = 4.5$ $DE = 3.5$	A1	At least one correct pairing or correct	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	711	total	
	Repeat AD (A - B - D) and EH (E - F - H)	M1	Adding their 10 to 67.5	
	Length = $67.5 + 10$			
	= 77.5 miles	A1	77.5 (cao)	[5]
(iv)	Repeat arcs EF and FD	B1	cao [NOT DE or D-F-E]	
	3.5 + 67.5 = 71 miles	B1	cao	[2]
(v)	A-B-C-G-F-D	B1	Showing route as far as D and then	
	then method stalls		explaining the problem	547
(0)	E and H are missed out	2.54		[1]
(vi)	C-B-A-D-F-E-H-G-C	M1	[If final C is missing \Rightarrow M1, A0]	
	37.5 miles	A1	[A diagram needs arrows for A1]	F23
<i>(</i> ••)	37.3 miles	B1	37.5 (cao)	[3]
(vii)	Nodes: $B \ C \ D \ F \ E \ H \ G$ Weight = 16 miles [Two shortest arcs from A are AB and AD] $2 + 6 + 16$ Lower bound = 24 miles	M1 A1 B1 B1 A1	A spanning tree on reduced network (may show AB, AD) Correct minimum spanning tree marked, with no extra arcs cao cao 8 + their 16 (or implied) cao	[6]
			Total =	25

(i) Idivide through by 15 to get $x+y+2z \le 600$ as given Stamping out: $5x+8y+10z \le 3600$ B1 $5x+8y+10z \le 3600$ B1 $5x+8y+10z \le 3600$ Checking: $100x+50y+50z \le 25000$ B1 $10x+5y+2z \le 1000$ B1 $10x+5y+2z \le 1000$ B1 $10x+5y+2z \le 1000$ B1 $10x+5y+2z \le 1000$ [4] (ii) x, y and z are non-negative B1 $x \ge 0, y \ge 0$ and $z \ge 0$ [1] (iii) $(P=)4x+3y+z$ B1 cao [1] (iv) $P \mid x \mid y \mid z \mid s \mid t \mid u \mid v \mid RHS \mid 1 \mid 4 \mid 3 \mid -1 \mid 0 \mid $	5	$15x+15y+30z \le 9000$	B1	$15x+15y+30z \le 9000$	1
Stamping out: $5x+8y+10z \le 3600$ B1 $5x+8y+10z \le 3600$ Fixing pin: $50x+50y+50z \le 25000$ $x+y+z \le 500$ B1 $10x+5y+2z \le 1000$ B1 $10x+5y+2z \le 1000$ [4]		· -	D1	13x+13y+302 < 7000	
Second		Stamping out: $5x+8y+10z \le 3600$	B1	$5x + 8y + 10z \le 3600$	
Silva Sy+2z Silva Sil		$x + y + z \le 500$	B1	$x + y + z \le 500$	
(iii)			B1	$10x + 5y + 2z \le 1000$	[4]
(iv) P x y z s t u v RHS 1 4 -3 -1 0 0 0 0 0 0 0 0 0	(ii)	x, y and z are non-negative	B1	$x \ge 0, y \ge 0 \text{ and } z \ge 0$	[1]
A	(iii)	(P =) 4x + 3y + z	B1	cao	[1]
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(iv)	1 -4 -3 -1 0 0 0 0 0 0 1 1 2 1 0 0 0 600 0 5 8 10 0 1 0 0 3600 0 1 1 1 0 0 1 0 500	B1 M1	-4 -3 -1 in objective row Correct use of slack variables 1 1 2 and 600 correct All constraint rows correct Accept variations in order of rows	[4]
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	(v)	1 0 -1 -0.2 0 0 0.4 400 0 0 0.5 1.8 1 0 0 -0.1 500 0 0 5.5 9 0 1 0 -0.5 3100 0 0 0.5 0.8 0 0 1 -0.1 400 0 1 0.5 0.2 0 0 0 0.1 100	M1 A1	x- column [Follow through their tableau and valid pivot if possible: no negative values in RHS column and P value has not decreased] Pivot row correct Other rows correct	[3]
laminated badges or plastic badges) To give a profit of £600 B1 Interpretation of their P value in context 6000 seconds (100 min) of printing time not used, 2000 seconds (33 min 20 sec) of stamping out time not used, 15000 seconds (250 min) of fixing pin time not used. [3]		$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	M1 A1	y-column [Follow through their tableau and valid pivot if possible] Pivot row correct Other rows correct Interpretation of their x, y and z	[3]
used, 2000 seconds (33 min 20 sec) of stamping out time not used, 15000 seconds (250 min) of fixing pin time not used.		laminated badges or plastic badges)	B1	entries) Interpretation of their <i>P</i> value in	
Total = 19		used, 2000 seconds (33 min 20 sec) of stamping out time not used, 15000 seconds (250 min) of fixing pin time not used.	B1	values	[3]

4737 Decision Mathematics 2

1(a) (i)	$A \bullet F$	5.1		
	$B \bullet G$	B1	A correct bipartite graph	
	$C \longrightarrow H$			
	$D \longrightarrow J$			
	E K			[1]
(ii)	<i>A</i> ● <i>F</i>			
	B ●	B1	A second bipartite graph showing the incomplete matching correctly	
	$C \bullet H$			
	D J			
	<i>E</i> ●			[1]
(iii)	E = F - A = H - D = K	B1	This path in any reasonable form	
	Fiona = Egg and tomato $F = E$ Gwen = Beef and horseradish Helen = Avocado and bacon Jack = Chicken and stuffing Mr King = Duck and plum sauce $F = E$ $G = B$	B1	This complete matching	[2]
(iv)	Interchange Gwen and Jack $F = E$ $G = C$ $H = A$ $J = B$ $K = D$	B1	This complete matching	[1]

(b)	Reduce rows			
(2)	F G H J K			
	L 7 7 7 7 0			
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	M1	Substantially correct attempt to	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		reduce rows	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		10000	
	P 6 9 7 5 0			
	Reduce columns			
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	L 6 4 5 6 0	M1	Substantially correct attempt to	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		reduce columns	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	A1	cao	
	P 5 6 5 4 0			
				[3]
	Cross out 0's using two (minimum no of) lines			
	Cross out 0's using two (minimum no. of) lines			
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
	Augment by 1	M1	Substantially correct attempt at	
	F G H J K L 5 3 4 5 0		augmenting	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	A 1	Assembly a compatible	[2]
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A1	Augmenting correctly	[2]
	P 4 5 4 3 0			
	Cross out 0's using three (minimum no. of)			
	lines			
	F G H J K			
	L 5 3 4 5 0			
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
	P 4 5 4 3 0			
	Augment by 3			
	F G H J K			
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1	Substantially correct attempt at	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		augmenting (by more than 1 in a	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		single step)	
		A1	Augmenting correctly	
	$egin{array}{ c c c c c c c c c c c c c c c c c c c$			
	Lemon = Gwen			
	Lemon = Gwen Mandarin = Fiona			
	Nectarine = Mr King	B1	Correct allocation	
	Orange = Helen			
	Peach = Jack			503
	1 cuch such			[3]
			Total =	13

2 (i)	Stage	State	Action	Working	Suboptimal			
_ (-)	Buge	State	71011011	Working	maxima	B1	Structure of table correct	
		0	0	7	7			
	2	1	0	6	6	M1	Stage and state values correct	
		2	0	8	8	A1	Action values correct	[2]
		0	0	5 + 7 = 12 6 + 6 = 12	12	AI	Action values correct	[3]
	•		0	4 + 7 = 11	12	B1	Working backwards from stage 2	
	1	1	1	5 + 6 = 11			7, 6, 8 correct in suboptimal	
			2	6 + 8 = 14	14		maxima column for stage 2	
		2	0	10 + 7 = 17	17	M1	Working column substantially	
		2	1 2	9 + 6 = 15 6 + 8 = 14		A1	correct for stage 1 Sums correct for stage 1	[2]
			0	8 + 12 = 20		B1	Suboptima maxima values correct	[3]
	0	0	1	9 + 14 = 23		D1	for stage 1	
			2	7 + 17 = 24	24	M1	Working column substantially	
							correct for stage 0	
						A1	Sums correct for stage 0	503
	Maximu	ım route	a = (0.0)	- (1;2) - (2;	0) (3:0)	B1	Correct route from (0; 0) to (3; 0)	[3]
	Weight		= (0,0)) - (1,2) - (2,	0) - (3,0)	B1	24 cao	[2]
								[2]
(ii)		8 12	D	(5) 17	17			
	$A(\S$	e^{λ}	C(6)		I (7)	B1	Assigning A to N appropriately	
		F	(A) \nearrow	X	L(7)			
	\leftarrow^{E}	3(9)	G(5)	M	(6)	M1	Substantially correct forward pass	
	0 0	91	10	16 18	24 24	A1	Forward pass correct	
	C(0)/5(9	11(()	V(8)			
	·			<u></u>	<u> </u>	M1	Substantially correct backward pass	
		7 7	K	(6) 15	5 16	A 1	Backward pass correct	
	Minimum completion time = 24					A1 B1	24 (cao) C, I, L (cao)	
	Mınımu Critical					B1	(40)	[7]
(iii)				naximum pa	ath	M1	Same path is found in both	L'J
(111)				orm a contin		A1	Recognition of why the solutions	
				ngest path	r		are the same, in general	[2]
		•		- •				
							Total =	20

3 (i)	For each pairing, the total of the points is 10. Subtracting 5 from each makes the total 0.	M1 A1	Sum of points is 10 So sum of scores is zero	
	Eg 3 points and 7 points \Rightarrow scores of -2 and +2		A specific example earns M1 only	[2]
(ii)	W scores -1 P has 6 points and W has 4 points	B1 B1	-1 6 and 4	[2]
(iii)	W is dominated by $Y-1 < 1, -3 < -2 and 1 < 2$	B1 B1	Y These three comparisons in any form	[2]
(iv)	Rovers	M1	Determining row minima and column maxima, or equivalent	
	Play-safe for Rovers is <i>P</i> Play-safes for Collies is <i>Y</i>	A1 A1	P Y	[3]
(v)	2p - 4(1-p) = 6p - 4 Y gives $1 - 2p$ Z gives $3p$	B1 B1	6 <i>p</i> - 4 in simplified form Both 1 -2 <i>p</i> and 3 <i>p</i> in any form	[2]
(vi)	$6p - 4 = 1 - 2p \Rightarrow p = \frac{5}{8}$	B1 M1 A1	Their lines drawn correctly on a reasonable scale Solving the correct pair of equations or using graph correctly $\frac{5}{8}$, 0.625, cao	[3]
(vii)	Add 4 throughout matrix to make all values non-negative On this augmented matrix, if Collies play X Rovers expect $6p_1 + 5p_2$; if Collies play Y Rovers expect $3p_1 + p_2 + 5p_3$; and if Collies play Z Rovers expect $7p_1 + 3p_2 + 4p_3$	B1	'Add 4', or new matrix written out or equivalent Relating to columns <i>X</i> , <i>Y</i> and <i>Z</i> respectively. Note: expressions are given in the question.	
	We want to maximise M where M only differs by a constant from m and, for each value of p , m is the minimum expected value.	В1	For each value of <i>p</i> we look at the minimum output, then we maximise these minima.	[3]
(viii)	$p_3 = \frac{3}{8}$ $M = -\frac{1}{4}$	B1 B1	cao cao	[2]
			Total =	19

			Total =	20
(vii)	A diagram showing a flow of 13 without using <i>BE</i> Flow is feasible and only sends 9 through <i>E</i>	M1 A1	May imply directions and assume that blanks mean 0	[2]
(vi)	3 gallons per minute Must flow 6 along ET and 7 along FT. Can send 4 into F from D so only need to send 9 through E	B1 B1 B1	A correct explanation	[3]
	Every cut forms a restriction Every cut \geq every flow min cut \geq max flow This cut = this flow so must be min cut and max flow	M1 A1 B1	Use of max flow – min cut theorem min cut ≥ max flow This cut = this flow (or having shown that both are 13)	[4]
(v)	Flow = $12 + 1 = 13$ gallons per minute Cut through ET and FT or $\{S,A,B,C,D,E,F\}$, $\{T\}$ = 13 gallons per minute	B1	Identifying this cut in any way	
b	S - (B) - C - D - F - T 1 gallon per minute	M1 A1	Follow through their part (iii)	[2]
(iv) a	If flows through A but not D its route must be $S-A-C-E$, but the flow through E is already a maximum	B1	A correct explanation	[1]
	Maximum flow through $E = 12$ gallons per minute	B1	12	[4]
(iii)	A diagram showing a flow with 12 through <i>E</i> Flow is feasible (upper capacities not exceeded) Nothing flows through <i>A</i> and <i>D</i>	M1 M1	Assume that blanks mean 0	
	At most 7 gallons per minute can leave F so there cannot be 10 gallons per minute entering it.	B1	Maximum out of $F = 7$	[2]
(ii)	At most 6 gallons per minute can enter A so there cannot be 7 gallons per minute leaving it	B1	Maximum into $A = 6$	
4 (i)	8+0+6+5+4 = 23 gallons per minute	M1 A1	8+0+6+5+4 or 23 23 with units	[2]

Grade Thresholds

Advanced GCE Mathematics (3890-2, 7890-2) June 2009 Examination Series

Unit Threshold Marks

7892		Maximum Mark	Α	В	С	D	E	U
4721	Raw	72	58	51	44	38	32	0
4/21	UMS	100	80	70	60	50	40	0
4722	Raw	72	56	49	42	35	28	0
4122	UMS	100	80	70	60	50	40	0
4723	Raw	72	53	46	39	33	27	0
4723	UMS	100	80	70	60	50	40	0
4724	Raw	72	53	46	39	33	27	0
4124	UMS	100	80	70	60	50	40	0
470E	Raw	72	49	43	37	32	27	0
4725	UMS	100	80	70	60	50	40	0
4726	Raw	72	53	46	40	34	28	0
4/20	UMS	100	80	70	60	50	40	0
4727	Raw	72	55	49	43	38	33	0
4/2/	UMS	100	80	70	60	50	40	0
4728	Raw	72	62	52	42	33	24	0
4/20	UMS	100	80	70	60	50	40	0
4729	Raw	72	57	48	39	31	23	0
4129	UMS	100	80	70	60	50	40	0
4730	Raw	72	61	51	41	32	23	0
4730	UMS	100	80	70	60	50	40	0
4731	Raw	72	55	46	38	30	22	0
4/31	UMS	100	80	70	60	50	40	0
4732	Raw	72	54	47	40	33	27	0
4/32	UMS	100	80	70	60	50	40	0
4733	Raw	72	57	49	41	33	26	0
4/33	UMS	100	80	70	60	50	40	0
4734	Raw	72	55	48	41	34	27	0
4/34	UMS	100	80	70	60	50	40	0
4735	Raw	72	52	45	38	32	26	0
4133	UMS	100	80	70	60	50	40	0
4736	Raw	72	57	50	44	38	32	0
4/30	UMS	100	80	70	60	50	40	0
4737	Raw	72	52	46	40	34	29	0
4/3/	UMS	100	80	70	60	50	40	0

Specification Aggregation Results

Overall threshold marks in UMS (ie after conversion of raw marks to uniform marks)

	Maximum Mark	Α	В	С	D	E	U
3890	300	240	210	180	150	120	0
3891	300	240	210	180	150	120	0
3892	300	240	210	180	150	120	0
7890	600	480	420	360	300	240	0
7891	600	480	420	360	300	240	0
7892	600	480	420	360	300	240	0

The cumulative percentage of candidates awarded each grade was as follows:

	A	В	С	D	E	U	Total Number of Candidates
3890	37.64	54.75	68.85	80.19	88.46	100	18954
3892	58.92	74.42	85.06	91.87	96.04	100	2560
7890	47.57	68.42	83.78	93.17	98.15	100	11794
7892	60.58	80.66	90.76	95.89	98.72	100	2006

For a description of how UMS marks are calculated see: http://www.ocr.org.uk/learners/ums_results.html

Statistics are correct at the time of publication.

List of abbreviations

Below is a list of commonly used mark scheme abbreviations. The list is not exhaustive.

AEF Any equivalent form of answer or result is equally acceptable AG Answer given (working leading to the result must be valid)

CAO Correct answer only

ISW Ignore subsequent working

MR Misread
SR Special ruling
SC Special case

ART Allow rounding or truncating

CWO Correct working only SOI Seen or implied

WWW Without wrong working

Ft or √ Follow through (allow the A or B mark for work correctly following on from

previous incorrect result.)

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge **CB1 2EU**

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 **OCR** is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office

Telephone: 01223 552552 Facsimile: 01223 552553

