

Mathematics

Advanced GCE 4723

Core Mathematics 3

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:	0870 770 6622
Facsimile:	01223 552610
E-mail:	publications@ocr.org.uk

4723

1	(i)	Attempt use of product rule	M1 producing + form
		Obtain $3x^2e^{2x} + 2x^3e^{2x}$	Al 2 or equiv
	(ii)	Attempt use of chain rule to produce $\frac{kx}{3+2x^2}$ form	M1 any constant <i>k</i>
		Obtain $\frac{4x}{3+2x^2}$	A1 2
	(iii)	Attempt use of quotient rule	M1 or equiv; condone u/v confusions
		Obtain $\frac{2x+1-2x}{(2x+1)^2}$ or $(2x+1)^{-1} - 2x(2x+1)^{-2}$	A1 2 or (unsimplified) equiv
	[If _	+c included in all three parts and all three parts otherw	vise correct, award M1A1, M1A1, M1A0; otherwise
	ıg	nore any inclusion of $\dots + c$.	6
2	(i)	Obtain one of $\pm \ln(\pm x \pm 4)$	M1
		Obtain correct equation $y = -\ln(x-4)$	A1 2 or equiv; condone use of modulus signs instead of brackets
	(ii)	State, in any order, S, S and T	M1 or equiv such as S^2 , T or 2S, T
		State T, then S, then S	A1 2 or equiv (note that S, S, T^9 and S, T^3 , S
			4
3	(i)	Use $\csc \theta = \frac{1}{\sin \theta}$	B1
		Attempt to express equation in terms of $\sin \theta$	M1 using $\cos 2\theta = \pm 1 \pm 2 \sin^2 \theta$ or equiv
		Obtain or clearly imply $6\sin^2\theta - 11\sin\theta - 10 = 0$	A1 3 or $-6\sin^2\theta + 11\sin\theta + 10 = 0$
	(ii)	Attempt solution to obtain at least one value of $\sin \theta$	M1 should be $s = -\frac{2}{3}, \frac{5}{2}$
		Obtain -41.8 Obtain -138	A1 allow -42 or greater accuracy A1 3 or greater accuracy; and no others between -180 and 180
		[Answer(s) only: award 0 out of 3.]	6

4	(i)	Either:	Integrate to obtain $k \ln x$	B1	
			Use at least one relevant logarithm property	M1	
			Obtain $k \ln 3 = \ln 81$ and hence $k = 4$	A1 3 AG; accurate work required	
		<u>Or 1</u> :	(where solution involves no use of a logarithm pro	operty)	
			Integrate to obtain $k \ln x$	B1	
			Obtain correct explicit expression for k and		
			conclude $k = 4$ with no error seen	B2 3 AG; e.g. $k = \frac{\ln 81}{\ln 6 - \ln 2} = 4$	
		<u>Or 2</u> :	(where solution involves verification of result by	initial substitution of 4 for <i>k</i>)	
			Integrate to obtain $4 \ln x$	B1	
			Use at least one relevant logarithm property	M1	
			Obtain ln 81 legitimately with no error seen	A1 3 AG; accurate work required	
	(ii)	State v	volume involves $\int \pi (\frac{4}{x})^2 dx$	B1 possibly implied	-
	Obtain integral of form $k_1 x^{-1}$		integral of form $k_1 x^{-1}$	M1 any constant k_1 including π or not	
		Use co	prrect process for finding volume produced from S	M1 $\int (k_2 2^2 - k_3 y^2) dx$, including π or not wi	th
		Obtain	$16\pi - \frac{16}{3}\pi$ and hence $\frac{32}{3}\pi$	correct limits indicated; or equiv A1 4 or exact equiv 7	

5	(i)	Attempt process for finding both critical values	M1	squaring both sides to obtain 3 terms on each side or considering 2 different linear eqns/inequalities		
		Obtain –4	A1			
		Obtain $\frac{2}{3}$	A1			
		Attempt process for solving inequality	M1	table, sketch,; needs two critical values; implied by plausible answer		
		Obtain $-4 \le x \le \frac{2}{3}$		with \leq and not $<$		
	(ii)	Use correct process to find value of $ x+2 $ using any valu Obtain $2\frac{2}{3}$ or $\frac{8}{3}$	e M1 A1 2 7	whether part of answer to (i) or not dependent on 5 marks awarded in part (i)		

6	(i)	Attempt calculations involving 1.0 and 1.1 Obtain -0.57 and 0.76	M1 A1	using radians or values to 1 dp (rounded or truncated); or equivs (where eqn rearranged)	
		Refer to sign change (or equiv for rearranged eqn)	A1 3	AG; following correct work only	
	(ii)	Obtain correct first iterate		using value x_1 such that $1.0 \le x_1 \le 1.1$	
		Carry out iteration processM1obtaining at least 3 iteratesObtain at least 3 correct iteratesA1showing at least 3 dpObtain 1.05083A14 answer required to exactly $[1 \rightarrow 1.047198 \rightarrow 1.050571 \rightarrow 1.050809 \rightarrow 1.050826 \rightarrow 1.050827;$ $1.05 \rightarrow 1.050769 \rightarrow 1.050823 \rightarrow 1.050827 \rightarrow 1.050827;$ $1.05 \rightarrow 1.050769 \rightarrow 1.050823 \rightarrow 1.050827 \rightarrow 1.050827;$ $1.050829 \rightarrow 1.050827]$			
	·	State or imply $\sec^2 2x = 1 + \tan^2 2x$	B1		
	()	Relate to earlier equation	M1	by halving or doubling answer to (ii) or	
		Deduce $2x = 1.05083$ and hence 0.525		carrying out equivalent iteration process following their answer to (ii); or greater accuracy	
		[SC: Rearrange to obtain $x = \frac{1}{2}\cos^{-1}(2x+3)^{-\frac{1}{2}}$	B1		
		Use iterative process to obtain 0.525	B1 2 10	or greater accuracy]	
7		Differentiate to obtain $k_1(3x-1)^3$	M1	any constant k_1	
		Obtain correct $12(3x-1)^3$	A1	or (unsimplified) equiv	
		Substitute 1 to obtain 96	A1		
		Attempt to find <i>x</i> -coordinate of <i>Q</i>	M1	using tangent with $y = 0$ or using gradient	
		Obtain $\frac{3}{6}$	Al	or exact equiv	
		Integrate to obtain $k_2(3x-1)^5$	M1	any constant k_2	
		Obtain correct $\frac{1}{15}(3x-1)^5$	A1	or (unsimplified) equiv	
		Use limits $\frac{1}{3}$ and 1 to obtain $\frac{32}{15}$	A1		
		Attempt to find shaded area by correct process	M1	integral – triangle or equiv	
		Obtain $(\frac{32}{15} - \frac{1}{2} \times \frac{1}{6} \times 16 \text{ and hence}) = \frac{4}{5}$	A1	or equiv	
			10		
•	(i)	Obtain $P = \frac{3}{2}\sqrt{2}$ or $P = \sqrt{18}$ or $P = 4.24$	P 1	or acuiv	
0	(1)	Attempt to find value of α	M1	condone sin/cos muddles and degrees	
		Obtain $\frac{1}{4}\pi$ or 0.785	A1 3	in radians now	
	 (ii) a	a Equate $x - \alpha$ to $\frac{1}{2}\pi$ or attempt solution			
		of $3\cos x + 3\sin x = 0$	M1	condone degrees here	
		Obtain $\frac{3}{4}\pi$	A1 2	or, $-\frac{5}{4}\pi$, $-\frac{1}{4}\pi$, $\frac{7}{4}\pi$,; in radians now	
	- t	Attempt correct process to find value of $3x - \alpha$	• • • • • • • • • • • • • • • • • • •	with attempt at rearranging $T(3x) = \frac{8}{6}\sqrt{6}$	
		Obtain at least one correct exact value of $3x - \alpha$	A1	$\pm \frac{1}{4}\pi, \pm \frac{11}{4}\pi,$	
		Attempt at least one positive value of x	M1	dep *M	
		Obtain $\frac{1}{36}\pi$	A1 4	-	
			9		

9	(i)	Attemp Obtain State f	to find x-coord of staty point or complete square $(\frac{3}{2}, -9)$ or $4(x-\frac{3}{2})^2 - 9$ or -9 $f(x) \ge -9$	M1 A1 A1	3	or equiv using any notation; with \geq
	(ii)	 Make one correct (perhaps general) relevant statement Conclude with correct evidence related to this f 		B1	 -	not 1-1, f is many-one,; maybe implied if attempt is specific to this f
				BI	2	2 AG; (more or less) correct sketch; correct relevant calculations,
(iii	 (iii)	Either:	Attempt to find expression for g^{-1}	*M1	 1	or equiv
			Obtain $\frac{1}{a}(x-b)$	A1		or equiv
			Compare $\frac{1}{a}(x-b)$ and $ax+b$	M1		dep *M; by equating either coefficients of x
						or constant terms (or both); or substituting two non-zero values of x and solving eqns for a
			Obtain at least $-\frac{b}{a} = b$ and hence $a = -1$	A1	4	AG; necessary detail required; or equiv
	[SC1: first two steps as above, then substitute $a =$ [SC2: substitute $a = -1$ at start: Attempt to find		x = -1: max possible M1A1B1] inverse M1 Obtain $-x+b$ and conclude A1 2]			
		<u>Or</u> :	State or imply that $y = g^{-1}(x)$ is reflection			
			of $y = g(x)$ in line $y = x$	B1		
			State that line unchanged by this reflection is perpendicular to $y = x$	M2		
			Conclude that a is -1	A1	4	
	·	 State o	r imply that $gf(x) = -(4x^2 - 12x) + b$			
	(1)	Attempt use of discriminant or relate to range of f Obtain $64+16b < 0$ or $9+b < 5$				or equiv
						or equiv
		Obtain	<i>b</i> < -4	A1 13	4	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

© OCR 2010

