GCE

Mathematics

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2010
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

1 (i) Attempt use of product rule
M1 producing $\ldots+\ldots$ form
Obtain $3 x^{2} \mathrm{e}^{2 x}+2 x^{3} \mathrm{e}^{2 x}$
A1 2 or equiv
(ii) Attempt use of chain rule to produce $\frac{k x}{3+2 x^{2}}$ form

M1 any constant k
Obtain $\frac{4 x}{3+2 x^{2}}$
A1 2
(iii) Attempt use of quotient rule

M1 or equiv; condone u / v confusions
Obtain $\frac{2 x+1-2 x}{(2 x+1)^{2}}$ or $(2 x+1)^{-1}-2 x(2 x+1)^{-2}$
A1 2 or (unsimplified) equiv
[If $\ldots+c$ included in all three parts and all three parts otherwise correct, award M1A1, M1A1, M1A0; otherwise ignore any inclusion of $\ldots+c$.]

6

2 (i) Obtain one of $\pm \ln (\pm x \pm 4)$

M1

Obtain correct equation $y=-\ln (x-4)$
A1 2 or equiv; condone use of modulus signs instead of brackets
(ii) State, in any order, S, S and T

State T, then S, then S
M1 or equiv such as S^{2}, T or $2 S, T$
A1 2 or equiv (note that S, S, T^{9} and S, T^{3}, S are alternative correct answers)

4

3 (i) Use $\operatorname{cosec} \theta=\frac{1}{\sin \theta}$
Attempt to express equation in terms of $\sin \theta$
Obtain or clearly imply $6 \sin ^{2} \theta-11 \sin \theta-10=0$
M1 using $\cos 2 \theta= \pm 1 \pm 2 \sin ^{2} \theta$ or equiv
A1 3 or $-6 \sin ^{2} \theta+11 \sin \theta+10=0$
(ii) Attempt solution to obtain at least one value of $\sin \theta$

Obtain -41.8
Obtain -138
M1 should be $s=-\frac{2}{3}, \frac{5}{2}$
A1 allow -42 or greater accuracy
A1 3 or greater accuracy; and no others between -180 and 180
[Answer(s) only: award 0 out of 3.]

4 (i) Either: Integrate to obtain $k \ln x$
Use at least one relevant logarithm property
Obtain $k \ln 3=\ln 81$ and hence $k=4$

B1
M1
A1 3 AG ; accurate work required

Or 1: (where solution involves no use of a logarithm property)

Integrate to obtain $k \ln x$ B1
Obtain correct explicit expression for k and conclude $k=4$ with no error seen

B2 3 AG ; e.g. $k=\frac{\ln 81}{\ln 6-\ln 2}=4$
Or 2: (where solution involves verification of result by initial substitution of 4 for k) Integrate to obtain $4 \ln x \quad$ B1
Use at least one relevant logarithm property M1
Obtain $\ln 81$ legitimately with no error seen
A1 3 AG ; accurate work required
(ii) State volume involves $\int \pi\left(\frac{4}{x}\right)^{2} \mathrm{~d} x$

Obtain integral of form $k_{1} x^{-1}$
Use correct process for finding volume produced from S

Obtain $16 \pi-\frac{16}{3} \pi$ and hence $\frac{32}{3} \pi$

B1 possibly implied
M1 any constant k_{1} including π or not
M1 $\quad \int\left(k_{2} 2^{2}-k_{3} y^{2}\right) \mathrm{d} x$, including π or not with correct limits indicated; or equiv
A1 4 or exact equiv
7

5 (i) Attempt process for finding both critical values

Obtain -4
Obtain $\frac{2}{3}$
Attempt process for solving inequality
A1
A1
M1 table, sketch, ...; needs two critical values; implied by plausible answer
Obtain $-4 \leq x \leq \frac{2}{3}$
A1 5 with \leq and not $<$
(ii) Use correct process to find value of $|x+2|$ using any value M1 ... whether part of answer to (i) or not Obtain $2 \frac{2}{3}$ or $\frac{8}{3}$ A1 2 dependent on 5 marks awarded in part (i) 7

6 (i) Attempt calculations involving 1.0 and 1.1
Obtain -0.57 and 0.76
Refer to sign change (or equiv for rearranged eqn)
(ii) Obtain correct first iterate

Carry out iteration process
Obtain at least 3 correct iterates
Obtain 1.05083

M1 using radians
A1 or values to 1 dp (rounded or truncated); or equivs (where eqn rearranged)
A1 3 AG ; following correct work only
B1 using value x_{1} such that $1.0 \leq x_{1} \leq 1.1$
M1 obtaining at least 3 iterates in all so far
A1 showing at least 3 dp
A1 4 answer required to exactly $5 \mathrm{~d} . \mathrm{p}$.
$[1 \rightarrow 1.047198 \rightarrow 1.050571 \rightarrow 1.050809 \rightarrow 1.050826 \rightarrow 1.050827 ;$
$1.05 \rightarrow 1.050769 \rightarrow 1.050823 \rightarrow 1.050827 \rightarrow 1.050827$;
$1.1 \rightarrow 1.054268 \rightarrow 1.051070 \rightarrow 1.050844 \rightarrow 1.050829 \rightarrow 1.050827]$
(iii) State or imply $\sec ^{2} 2 x=1+\tan ^{2} 2 x$

Relate to earlier equation
Deduce $2 x=1.05083$ and hence 0.525
[SC: Rearrange to obtain $x=\frac{1}{2} \cos ^{-1}(2 x+3)^{-\frac{1}{2}}$
Use iterative process to obtain 0.525

B1
M1 by halving or doubling answer to (ii) or carrying out equivalent iteration process
A $1 \sqrt{ } \mathbf{3}$ following their answer to (ii); or greater accuracy

B1
B1 2 or greater accuracy]
10

7

Differentiate to obtain $k_{1}(3 x-1)^{3}$
Obtain correct $12(3 x-1)^{3}$
Substitute 1 to obtain 96
Attempt to find x-coordinate of Q
Obtain $\frac{5}{6}$

Integrate to obtain $k_{2}(3 x-1)^{5}$
Obtain correct $\frac{1}{15}(3 x-1)^{5}$
Use limits $\frac{1}{3}$ and 1 to obtain $\frac{32}{15}$
Attempt to find shaded area by correct process
Obtain ($\frac{32}{15}-\frac{1}{2} \times \frac{1}{6} \times 16$ and hence) $\frac{4}{5}$

M1 any constant k_{1}
A1 or (unsimplified) equiv
A1

A1 or exact equiv

M1 any constant k_{2}
A1 or (unsimplified) equiv
A1
M1 integral - triangle or equiv
A1 or equiv
10
using tangent with $y=0$ or using gradient

B1 or equiv
M1 condone sin/cos muddles and degrees
A1 3 in radians now
(ii) a Equate $x-\alpha$ to $\frac{1}{2} \pi$ or attempt solution
of $3 \cos x+3 \sin x=0$
Obtain $\frac{3}{4} \pi$

M1 condone degrees here
A1 2 or $\ldots,-\frac{5}{4} \pi,-\frac{1}{4} \pi, \frac{7}{4} \pi, \ldots$; in radians now
b Attempt correct process to find value of $3 x-\alpha$
Obtain at least one correct exact value of $3 x-\alpha$
Attempt at least one positive value of x
Obtain $\frac{1}{36} \pi$
*M1 with attempt at rearranging $\mathrm{T}(3 x)=\frac{8}{9} \sqrt{6}$
A1 $\pm \frac{1}{6} \pi, \pm \frac{11}{6} \pi, \ldots$
M1 $\quad \operatorname{dep}$ *M
A1 4
9

9 (i) Attempt to find x-coord of staty point or complete square M

Obtain $\left(\frac{3}{2},-9\right)$ or $4\left(x-\frac{3}{2}\right)^{2}-9$ or -9
State $f(x) \geq-9$

A1 or equiv
A1 3 using any notation; with \geq

B1 not $1-1$, f is many-one, ... ; maybe implied if attempt is specific to this f
B1 2 AG ; (more or less) correct sketch; correct relevant calculations, ...
(iii) Either: Attempt to find expression for g^{-1}

Obtain $\frac{1}{a}(x-b)$
Compare $\frac{1}{a}(x-b)$ and $a x+b$

Obtain at least $-\frac{b}{a}=b$ and hence $a=-1$
[SC1: first two steps as above, then substitute $a=-1$: max possible M1A1B1]
[SC2: substitute $a=-1$ at start: Attempt to find inverse M1 Obtain $-x+b$ and conclude A1 2]
Or: \quad State or imply that $y=\mathrm{g}^{-1}(x)$ is reflection of $y=\mathrm{g}(x)$ in line $y=x$

B1

State that line unchanged by this reflection is perpendicular to $y=x$

M2
Conclude that a is -1
A1 4
(iv) State or imply that $\mathrm{gf}(x)=-\left(4 x^{2}-12 x\right)+b$

Attempt use of discriminant or relate to range of f
Obtain $64+16 b<0$ or $9+b<5$
Obtain $b<-4$

B1
M1 or equiv
A1 or equiv
A1 4
13

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553
© OCR 2010

