Mathematics

Advanced Subsidiary GCE 4721

Core Mathematics 1

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2010
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

1 (i)	1	B1	1	
(ii)	$\frac{1}{3}$	M1		$\frac{1}{9^{\frac{1}{2}}} \text { or } \frac{1}{\sqrt{9}} \text { soi }$
		A1	2	cao
2 (i)		$\begin{aligned} & \text { B1* } \\ & \\ & \text { B1 } \\ & \text { dep* } \end{aligned}$	2	Reasonably correct curve for $y=-\frac{1}{x^{2}}$ in $3^{\text {rd }}$ and $4^{\text {th }}$ quadrants only Very good curves in curve for $y=-\frac{1}{x^{2}}$ in $3^{\text {rd }}$ and $4^{\text {th }}$ quadrants SC If 0 , very good single curve in either $3^{\text {rd }}$ or $4^{\text {th }}$ quadrant and nothing in other three quadrants. B1
(ii)		M1 A1	2	Translation of their $y=-\frac{1}{x^{2}}$ vertically Reasonably correct curve, horizontal asymptote soi at $y=3$
(iii)	$y=-\frac{2}{x^{2}}$	B1	1 5	
3 (i)	$\begin{aligned} & \frac{12(3-\sqrt{5})}{(3+\sqrt{5})(3-\sqrt{5})} \\ & =\frac{12(3-\sqrt{5})}{9-5} \\ & =9-3 \sqrt{5} \end{aligned}$	M1 A1 A1	3	Multiply numerator and denom by $3-\sqrt{5}$ $(3+\sqrt{5})(3-\sqrt{5})=9-5$
(ii)	$\begin{aligned} & 3 \sqrt{2}-\sqrt{2} \\ & =2 \sqrt{2} \end{aligned}$	M1 A1	2 5	Attempt to express $\sqrt{18}$ as $\mathrm{k} \sqrt{2}$

10(i)	$\begin{aligned} & \frac{d y}{d x}=6 x^{2}+10 x-4 \\ & 6 x^{2}+10 x-4=0 \\ & 2\left(3 x^{2}+5 x-2\right)=0 \\ & (3 x-1)(x+2)=0 \\ & x=\frac{1}{3} \text { or } x=-2 \\ & y=-\frac{19}{27} \text { or } y=12 \end{aligned}$	B1 B1 M1*	6	1 term correct Completely correct (no +c) Sets their $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ Correct method to solve quadratic SC If A0 A0, one correct pair of values, spotted or from correct factorisation www B1
(ii)	$-2<x<\frac{1}{3}$	M1 A1	2	Any inequality (or inequalities) involving both their x values from part (i) Allow \leq and \geq
(iii)	When $x=\frac{1}{2}, 6 x^{2}+10 x-4=\frac{5}{2}$	M1		Substitute $x=\frac{1}{2}$ into their $\frac{\mathrm{d} y}{\mathrm{~d} x}$
	and $2 x^{3}+5 x^{2}-4 x=-\frac{1}{2}$	B1		Correct y coordinate
	$y+\frac{1}{2}=\frac{5}{2}\left(x-\frac{1}{2}\right)$	M1		Correct equation of straight line using their values. Must use their $\frac{d y}{d x}$ value not e.g. the negative reciprocal
	$10 x-4 y-7=0$	A1		Shows rearrangement to given equation CWO throughout for A1

(iv)

B1

B1

Sketch of a cubic with a tangent which meets it at 2 points only
+ve cubic with max/min points and line with + ve gradient as tangent to the curve to the right of the min

SC1

B1 Convincing algebra to show that the cubic
$8 x^{3}+20 x^{2}-26 x+7=0$ factorises into $(2 x-1)(2 x-1)(x+7)$
B1 Correct argument to say there are 2 distinct roots
SC2 B1 Recognising $y=2.5 x-7 / 4$ is tangent from part (iii)
B1 As second B1 on main scheme

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

