

Mathematics

Advanced Subsidiary GCE 4721

Core Mathematics 1

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone:0870 770 6622Facsimile:01223 552610E-mail:publications@ocr.org.uk

1 (i)	1	B1	1	
(ii)	$\frac{1}{3}$	M1		$\frac{1}{9^{\frac{1}{2}}} \text{ or } \frac{1}{\sqrt{9}} \text{ soi}$
		A1	2 3	cao
2 (i)	y,	B1*		Reasonably correct curve for $y = -\frac{1}{r^2}$ in
				3^{rd} and 4^{th} quadrants only
		B1	2	Very good curves in curve for $y = -\frac{1}{r^2}$ in
		dep*		3^{rd} and 4^{th} quadrants
	ιμ			SC If 0, very good single curve in either 3 rd or 4 th quadrant and nothing in other three quadrants. B1
(ii)	<i>y</i>			
		M1		Translation of their $y = -\frac{1}{x^2}$ vertically
		A1	2	Reasonably correct curve, horizontal asymptote soi at $y = 3$
(iii)	$y = -\frac{2}{x^2}$	B1	1	
	x^2		5	
3 (i)	$\frac{12(3-\sqrt{5})}{(3+\sqrt{5})(3-\sqrt{5})}$	M1		Multiply numerator and denom by $3 - \sqrt{5}$
	$=\frac{12(3-\sqrt{5})}{9-5}$	A1		$(3+\sqrt{5})(3-\sqrt{5}) = 9-5$
	$9-5$ $=9-3\sqrt{5}$	A1	3	
(ii)	$3\sqrt{2} - \sqrt{2}$	M1		Attempt to express $\sqrt{18}$ as $k\sqrt{2}$
	$=2\sqrt{2}$	A1	2 5	

Mark Scheme

4 (i)	$(x^2 - 4x + 4)(x + 1)$	M1		Attempt to multiply a 3 term quadratic by a linear factor or to expand all 3 brackets with an appropriate number of terms (including an x^3 term)
		A1		Expansion with at most 1 incorrect term
	$=x^{3}-3x^{2}+4$	A1	3	Correct, simplified answer
(ii)	y,	B1		+ve cubic with 2 or 3 roots
		B1		Intercept of curve labelled (0, 4) or indicated on <i>y</i> -axis
	-1 2 x	B 1	3	(-1, 0) and turning point at $(2, 0)$ labelled or indicated on <i>x</i> -axis and no other <i>x</i> intercepts
	1		6	
5	$k = x^2$	M1*		Use a substitution to obtain a quadratic or
	$4k^2 + 3k - 1 = 0$			factorise into 2 brackets each containing x^2
	(4k-1)(k+1) = 0	M1 dep		Correct method to solve a quadratic
	$k = \frac{1}{4}$ (or $k = -1$)	A1		
	$x = \pm \frac{1}{2}$	M1		Attempt to square root to obtain x
	$x = \pm \frac{1}{2}$	A1	5	$\pm \frac{1}{2}$ and no other values
			5	
6	$y = 2x + 6x^{-\frac{1}{2}}$	M1		Attempt to differentiate
Ū	$dy = -\frac{3}{2}$	A1		$kx^{-\frac{3}{2}}$
	$y = 2x + 6x^{-2}$ $\frac{dy}{dx} = 2 - 3x^{-\frac{3}{2}}$	A1		Completely correct expression (no +c)
	When $x = 4$, gradient = $2 - \frac{3}{\sqrt{4^3}}$	M1		Correct evaluation of either $4^{-\frac{3}{2}}$ or $4^{-\frac{1}{2}}$
	$=\frac{13}{8}$	A1	5	
	8		5	
7	$2(6-2y)^2 + y^2 = 57$	M1*		substitute for x/y or attempt to get an equation in 1 variable only
		A1		correct unsimplified expression
	$2(36 - 24y + 4y^2) + y^2 = 57$			
	$9y^2 - 48y + 15 = 0$	A1		obtain correct 3 term quadratic
	$3y^2 - 16y + 5 = 0$			compating the difference of the second secon
	(3y-1)(y-5) = 0	M1 dep		correct method to solve 3 term quadratic
	$y = \frac{1}{3}$ or $y = 5$	AI		
	$x = \frac{16}{3}$ or $x = -4$	A1	_	SC If A0 A0, one correct pair of values,
	3		6 6	spotted or from correct factorisation www B1

8 (i)	$2(x^2 + \frac{5}{2}x)$	B1		$\left(x+\frac{5}{4}\right)^2$
	$=2\left[\left(x+\frac{5}{4}\right)^2-\frac{25}{16}\right]$	M1		$q = -2p^2$
	$=2\left(x+\frac{5}{4}\right)^2-\frac{25}{8}$	A1	3	$q = -\frac{25}{8}$ c.w.o.
(ii)	$\left(-\frac{5}{4},-\frac{25}{8}\right)$	B1√ B1√	2	
(iii)	$x = -\frac{5}{4}$ $x(2x+5) > 0$	B1	1	
(iv)	x(2x+5) > 0	M1		Correct method to find roots
		A1		$0, -\frac{5}{2} \operatorname{seen}$
	$x < -\frac{5}{2}, x > 0$	M1		Correct method to solve quadratic
	2	A1	4	inequality.
			10	(not wrapped, strict inequalities, no 'and')
9 (i)	$\frac{4+p}{2} = -1, \frac{5+q}{2} = 3$	M1		Correct method (may be implied by one correct coordinate)
	p = -6 $q = 1$	A1 A1	3	
(ii)	$r^{2} = (4 - 1)^{2} + (5 - 3)^{2}$	M1		Use of $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ for
	$r = \sqrt{29}$	A1	2	either radius or diameter
(iii)	$(x+1)^2 + (y-3)^2 = 29$	M1		$(x+1)^2$ and $(y-3)^2$ seen
(111)	(x+1) + (y-3) = 27	M1		$(x \pm 1)^2 + (y \pm 3)^2 = $ their r^2
<u></u>	$x^2 + y^2 + 2x - 6y - 19 = 0$	A1	3	Correct equation in correct form
(iv)	gradient of radius = $\frac{3-5}{-1-4}$	M1		uses $\frac{y_2 - y_1}{x_2 - x_1}$
	$=\frac{2}{5}$	A1		oe
	gradient of tangent = $-\frac{5}{2}$	B 1√		oe
	$y-5 = -\frac{5}{2}(x-4)$	M1		correct equation of straight line through (4, 5), any non-zero gradient
	$y = -\frac{5}{2}x + 15$	A1	5 13	oe 3 term equation e.g. $5x + 2y = 30$

10(i)	$\frac{dy}{dx} = 6x^2 + 10x - 4$	B1 B1		1 term correct Completely correct (no +c)
	$6x^{2} + 10x - 4 = 0$ $2(3x^{2} + 5x - 2) = 0$	M1*		Sets their $\frac{dy}{dx} = 0$
	(3x-1)(x+2) = 0	M1 dep*		Correct method to solve quadratic
	$x = \frac{1}{3}$ or $x = -2$	A1		SC If A0 A0, one correct pair of values,
	$y = -\frac{19}{27}$ or $y = 12$	A1	6	spotted or from correct factorisation www B1
(ii)	$-2 < x < \frac{1}{3}$	M1		Any inequality (or inequalities) involving both their <i>x</i> values from part (i)
	3	A1	2	Allow \leq and \geq
(iii)	When $x = \frac{1}{2}$, $6x^2 + 10x - 4 = \frac{5}{2}$	M1		Substitute $x = \frac{1}{2}$ into their $\frac{dy}{dx}$
	and $2x^3 + 5x^2 - 4x = -\frac{1}{2}$	B 1		Correct y coordinate
	$y + \frac{1}{2} = \frac{5}{2} \left(x - \frac{1}{2} \right)$	M1		Correct equation of straight line using their values. Must use their $\frac{dy}{dx}$ value not e.g. the
				negative reciprocal
	10x - 4y - 7 = 0	A1	4	Shows rearrangement to given equation CWO throughout for A1
(iv)	y	B1		Sketch of a cubic with a tangent which meets it at 2 points only
	\frown	B 1	2	+ve cubic with max/min points and line
			14	with +ve gradient as tangent to the curve to the right of the min
	x			SC1 B1 Convincing algebra to show that the cubic $8x^3 + 20x^2 - 26x + 7 = 0$ factorises into (2x - 1)(2x - 1)(x + 7) B1 Correct argument to say there are 2 distinct roots SC2 B1 Recognising y = 2.5x -7/4 is tangent from part (iii) B1 As second B1 on main scheme

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

