GCE

Mathematics

Core Mathematics 2

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2010
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

1 (i)	$\begin{aligned} & \mathrm{f}(2)=8+4 a-2 a-14 \\ & 2 a-6=0 \\ & a=3 \end{aligned}$	M1*		Attempt $f(2)$ or equiv, including inspection / long division / coefficient matching
		M1d* A1	3	Equate attempt at $\mathrm{f}(2)$, or attempt at remainder, to 0 and attempt to solve Obtain $a=3$
(ii)	$\begin{aligned} f(-1) & =-1+3+3-14 \\ & =-9 \end{aligned}$	M1		Attempt $\mathrm{f}(-1)$ or equiv, including inspection / long division / coefficient matching
		A1 ft	2	Obtain -9 (or $2 a-15$, following their a)
		5		
2 (i)	$\begin{aligned} \text { area } & \approx \frac{1}{2} \times 3 \times(\sqrt[3]{8}+2(\sqrt[3]{11}+\sqrt[3]{14})+\sqrt[3]{17}) \\ & \approx 20.8 \end{aligned}$	B1		State or imply at least 3 of the 4 correct y-coords, and no others
		M1		Use correct trapezium rule, any h, to find area between $x=1$ and $x=10$
		M1		Correct h (soi) for their y-values - must be at equal intervals
		A1	4	Obtain 20.8 (allow 20.7)
(ii)	use more strips / narrower strips	B1	1	Any mention of increasing n or decreasing h
			5	
3 (i)	$(1+1 / 2 x)^{10}=1+5 x+11.25 x^{2}+15 x^{3}$	B1		Obtain $1+5 x$
		M1		Attempt at least the third (or fourth) term of the binomial expansion, including coeffs
		A1		Obtain 11.25x ${ }^{2}$
		A1	4	Obtain $15 x^{3}$
(ii)	$\begin{aligned} \text { coeff of } x^{3} & =(3 \times 15)+(4 \times 11.25)+(2 \times 5) \\ & =100 \end{aligned}$	M1		Attempt at least one relevant term, with or without powers of x
		A1 ft		Obtain correct (unsimplified) terms (not necessarily summed) - either coefficients or still with powers of x involved
		A1	3	Obtain 100
			7	

4 (i) $u_{1}=6, u_{2}=11, u_{3}=16$
B1 1 State 6, 11, 16
(ii) $\begin{aligned} S_{40} & =40 / 2(2 \times 6+39 \times 5) \\ & =4140\end{aligned}$

M1 Show intention to sum the first 40 terms of a sequence

M1 Attempt sum of their AP from (i), with n $=40, a=$ their u_{1} and $d=$ their $u_{2}-u_{1}$

A1 3 Obtain 4140
(iii) $\quad w_{3}=56$
$5 p+1=56$ or $6+(p-1) \times 5=56$
$p=11$

B1 State or imply $w_{3}=56$
M1 Attempt to solve $u_{p}=k$
A1 3 Obtain $p=11$
7

$\mathbf{5}$ (i) $\frac{\sin \theta}{8}=\frac{\sin 65}{11}$	M1	Attempt use of correct sine rule	
$\theta=41.2^{\circ}$	A1	2	Obtain 41.2 ${ }^{\circ}$, or better

(ii) a $\quad 180-(2 \times 65)=50^{\circ} \quad$ or $65 \times \pi / 180=1.134 \quad$ M1 Use conversion factor of $\pi / 180$ $50 \times \pi / 180=0.873$ A.G. $\quad \pi-(2 \times 1.134)=0.873$

A1 2 Show 0.873 radians convincingly (AG)

(ii) b	$\begin{aligned} & \text { area sector }=1 / 2 \times 8^{2} \times 0.873=27.9 \\ & \text { area triangle }=1 / 2 \times 8^{2} \times \sin 0.873=24.5 \\ & \begin{aligned} \text { area segment } & =27.9-24.5 \\ & =3.41 \end{aligned} \end{aligned}$	M1		Attempt area of sector, using (1/2) $r^{2} \theta$
		M1		Attempt area of triangle using (1/2) $r^{2} \sin \theta$
		M1		Subtract area of triangle from area of sector
		A1	4	Obtain 3.41or 3.42
			8	

6 a \quad	$\int_{3}^{5}\left(x^{2}+4 x\right) \mathrm{d} x=\left[\frac{1}{3} x^{3}+2 x^{2}\right]_{3}^{5}$
	$=(125 / 3+50)-(9+18)$
$=$	$64 \frac{2}{3}$

M1 Attempt integration
A1 \quad Obtain $\frac{1}{3} x^{3}+2 x^{2}$
M1 Use limits $x=3,5-$ correct order \& subtraction

A1 4 Obtain $64^{2} / 3$ or any exact equiv
b $\quad \int(2-6 \sqrt{y}) \mathrm{d} y=2 y-4 y^{\frac{3}{2}}+c$
B1 State $2 y$
M1 Obtain $k y^{\frac{3}{2}}$
A1 3 Obtain $-4 y^{\frac{3}{2}}$ (condone absence of $+c$)

c \quad| $\int_{1}^{\infty} 8 x^{-3} \mathrm{~d} x$ | $=\left[\frac{-4}{x^{2}}\right]_{1}^{\infty}$ |
| ---: | :--- |
| | $=(0)-(-4)$ |
| | $=4$ |

B1 State or imply $\frac{1}{x^{3}}=x^{-3}$
M1 Attempt integration of $k x^{n}$
A1 Obtain correct $-4 x^{-2}(+c)$

A1 ft 4 Obtain 4 (or $-k$ following their $k x^{-2}$)
11

$$
7 \text { (i) } \begin{aligned}
\frac{\sin ^{2} x-\cos ^{2} x}{1-\sin ^{2} x} & =\frac{\sin ^{2} x-\cos ^{2} x}{\cos ^{2} x} \\
& =\frac{\sin ^{2} x}{\cos ^{2} x}-\frac{\cos ^{2} x}{\cos ^{2} x}
\end{aligned}
$$

Use either $\sin ^{2} x+\cos ^{2} x=1$, or $\tan x=\sin x / \cos x$

$$
=\tan ^{2} x-1 \quad \text { A1 } \quad 2 \quad \text { Use other identity to obtain given answer }
$$ convincingly.

(ii) $\tan ^{2} x-1=5-\tan x$
$\tan ^{2} x+\tan x-6=0$
$(\tan x-2)(\tan x+3)=0$
$\tan x=2, \tan x=-3$
$x=63.4^{\circ}, 243^{\circ} \quad x=108^{\circ}, 288^{\circ}$

B1
M1

A1
M1

A1ft
A1

State correct equation
Attempt to solve three term quadratic in $\tan x$

Obtain 2 and -3 as roots of their quadratic
Attempt to solve $\tan x=k$ (at least one root)

Obtain at least 2 correct roots
Obtain all 4 correct roots
8

8 a	$\begin{aligned} & \log 5^{3 w-1}=\log 4^{250} \\ & (3 w-1) \log 5=250 \log 4 \\ & 3 w-1=\frac{250 \log 4}{\log 5} \\ & w=72.1 \end{aligned}$	M1*		Introduce logarithms throughout
		M1*		Use $\log a^{b}=b \log a$ at least once
		A1		Obtain $(3 w-1) \log 5=250 \log 4$ or equiv
		M1d*		Attempt solution of linear equation
		A1	5	Obtain 72.1, or better
	$\log _{x} \frac{5 y+1}{3}=4$	M1		Use $\log a-\log b=\log a / b$ or equiv
	$\begin{aligned} & \frac{5 y+1}{3}=x^{4} \\ & 5 y+1=3 x^{4} \\ & y=\frac{3 x^{4}-1}{5} \end{aligned}$	M1		Use $\mathrm{f}(y)=x^{4}$ as inverse of $\log _{x} \mathrm{f}(y)=4$
		M1		Attempt to make y the subject of $\mathrm{f}(y)=x^{4}$
		A1	4	Obtain $y=\frac{3 x^{4}-1}{5}$, or equiv
			9	
9 (i)	$\begin{aligned} & a r=a+d, a r^{3}=a+2 d \\ & 2 a r-a r^{3}=a \\ & a r^{3}-2 a r+a=0 \\ & r^{3}-2 r+1=0 \quad \text { A.G. } \end{aligned}$	M1		Attempt to link terms of AP and GP, implicitly or explicitly.
		M1		Attempt to eliminate d, implicitly or explicitly, to show given equation.
		A1	3	Show $r^{3}-2 r+1=0$ convincingly
(ii)	$\mathrm{f}(r)=(r-1)\left(r^{2}+r-1\right)$	B1		Identify $(r-1)$ as factor or $r=1$ as root
		M1*		Attempt to find quadratic factor
	$r=\frac{-1 \pm \sqrt{5}}{2}$			
		A1		Obtain $r^{2}+r-1$
	Hence $r=\frac{-1+\sqrt{5}}{2}$	M1d*		Attempt to solve quadratic
		A1	5	Obtain $r=\frac{-1+\sqrt{5}}{2}$ only
(iii)	$\frac{a}{1-r}=3+\sqrt{5}$	M1		Equate S_{∞} to $3+\sqrt{5}$
	$a=\left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right)(3+\sqrt{5})$	A1		$\text { Obtain } \frac{a}{1-\left(\frac{-1+\sqrt{5}}{2}\right)}=3+\sqrt{5}$
	$\begin{aligned} & a=9 / 2-5 / 2 \\ & a=2 \end{aligned}$	M1		Attempt to find a
		A1	4	Obtain $a=2$
			12	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

